exenatide has been researched along with Memory-Disorders* in 7 studies
7 other study(ies) available for exenatide and Memory-Disorders
Article | Year |
---|---|
GLP-1R activation ameliorated novel-object recognition memory dysfunction via regulating hippocampal AMPK/NF-κB pathway in neuropathic pain mice.
Growing evidences indicate that neuropathic pain is frequently accompanied with cognitive impairments, which aggravate the decrease in the quality of life of chronic pain patients. Furthermore, it has been shown that the activation of Glucagon-like-peptide-1receptor (GLP-1R) improved memory deficit in multiple diseases, including Alzheimer's disease (AD), stroke. However, whether GLP-1R activation could improve memory impairment induced by neuropathic pain and the mechanisms underlying the effect of the activation of GLP-1R on memory protection have not yet been established. The spared nerve injury (SNI) model was established as a kind of neuropathic pain. And novel-object recognition memory (hippocampus-dependent memory) was tested by the novel object recognition test (NORT). The expression levels of GLP-1, GLP-1R, adenosine monophosphate-activated protein kinase (AMPK), p-AMPKThr172, nuclear factor κ B p65 (NF-κB p65), interleukin-1beta (IL-1β), IL-1β p17 (mature IL-1β), tumor necrosis factor-alpha (TNF-α) and the synaptic proteins were tested in the murine hippocampus with memory deficits caused by neuropathic pain. Then, exenatide acetate (Ex-4, a GLP-1R agonist), exendin (9-39) (Ex(9-39), a GLP-1R antagonist) and Compound C dihydrochloride (CC, an AMPK inhibitor) were used to test the effects of the activation of GLP-1R in the mice with neuropathic pain. First, we uncovered that neuropathic pain could inhibit GLP-1/GLP-R axis, disturb inflammatory signaling pathway, increase the expression of IL-1β, IL-1β p17 and TNF-α, downregulate the synaptic proteins (postsynaptic density protein 95 (PSD95) and Arc). Subsequently, we reported that Ex-4 treatment could improve recognition memory impairment, increase the ratio of p-AMPKThr172/AMPK, inhibit the phosphorylation NF-κB p65 and decrease the expression of IL-1β, IL-1β p17 and TNF-α, upregulate the levels of PSD95 and Arc. Moreover, we found that Ex(9-39) and CC treatment could abrogate the memory protection of activation of GLP-1R in mice with neuropathic pain. The results indicated that the activation of GLP-1R could improve recognition memory impairment via regulating AMPK/NF-κB pathway, improving neuroinflammation, reversing the decreased level of synaptic proteins in neuropathic pain mice. Topics: AMP-Activated Protein Kinase Kinases; Animals; Chronic Pain; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Hippocampus; Interleukin-1beta; Memory Disorders; Mice; Neuralgia; Neuroinflammatory Diseases; Open Field Test; Peptide Fragments; Peripheral Nerve Injuries; Recognition, Psychology; Sciatic Nerve; Transcription Factor RelA; Tumor Necrosis Factor-alpha | 2021 |
The effects of glucagon-like peptide 1 receptor agonist (exenatide) on memory impairment, and anxiety- and depression-like behavior induced by REM sleep deprivation.
Previous investigations have shown that REM sleep deprivation impairs the hippocampus-dependent memory, long-term potentiation and causing mood changes. The aim of the present study was to explore the effects of exenatide on memory performance, anxiety- and depression like behavior, oxidative stress markers, and synaptic protein levels in REM sleep deprived rats. A total of 40 male Wistar rats were randomly divided to control, exenatide-treated control, sleep deprivation (SD), wide platform (WP) and exenatide-treated SD groups. During experiments, exenatide treatment (0.5 μg/kg, subcutaneously) was applied daily in a single dose for 9 days. Modified multiple platform method was employed to generate REM sleep deprivation for 72 h. The Morris water maze test was used to assess memory performance. Anxiety- and depression-like behaviors were evaluated by open field test (OFT), elevated plus maze (EPM) forced swimming test (FST), respectively 72 h after REMSD. The levels of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and postsynaptic density proteins 95 (PSD95) were measured in tissues of hippocampus and prefrontal cortex. The content of malondialdehyde (MDA) and reduced glutathione (GSH) were also measured. In the present study, an impairment in memory was observed in SD rats at the 24th hour of SD in compare to those of other groups. REMSD increased depression-like behavior in FST as well as the number of rearing and crossing square in OFT. Anxiety is the most common comorbid condition with depressive disorders. Contents of CaMKII and PSD95 decreased in hippocampus of SD rats. Exenatide treatment improved the impaired memory of SD rats and increased CaMKII content in hippocampus There was no difference in MDA and GSH levels among groups. Exenatide treatment also diminished locomotor activity in OFT. In conclusion, treatment with exenatide, at least in part, prevented from these cognitive and behavioral changes possibly through normalizing CaMKII levels in the hippocampus. Topics: Animals; Antioxidants; Anxiety; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Depression; Disks Large Homolog 4 Protein; Exenatide; Glucagon-Like Peptide-1 Receptor; Glutathione; Male; Malondialdehyde; Memory Disorders; Psychomotor Performance; Rats; Rats, Wistar; Sleep Deprivation; Sleep, REM; Swimming | 2021 |
GLP-1 receptor agonists downregulate aberrant GnT-III expression in Alzheimer's disease models through the Akt/GSK-3β/β-catenin signaling.
Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Cell Survival; Disease Models, Animal; Down-Regulation; Enzyme Inhibitors; Exenatide; Glucagon-Like Peptide-1 Receptor; Male; Maze Learning; Memory Disorders; Mice; Mice, Transgenic; N-Acetylglucosaminyltransferases; Oncogene Protein v-akt; PC12 Cells; Peptides; Presenilin-1; Rats; RNA, Small Interfering; Signal Transduction; Venoms | 2018 |
Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction.
In a recent study, we demonstrated the potential of a cell-penetrating peptide (CPP) penetratin to deliver the peptide drug insulin to the brain via nasal administration, and its pharmacological effect on the mild cognitive dysfunction in senescence-accelerated mouse (SAMP8). However, the therapeutic potential of intranasal insulin administration was attenuated when applied to the aged SAMP8 with severe cognitive dysfunction. The present study, therefore, aimed to overcome the difficulty in treating severe cognitive dysfunction using insulin by investigating potential alternatives, glucagon-like peptide-1 (GLP-1) receptor agonists such as exendin-4. Examination using normal ddY mice demonstrated that the distribution of exendin-4 throughout the brain was dramatically increased by intranasal coadministration with the L-form of penetratin. The activation of hippocampal insulin signaling after the simultaneous nose-to-brain delivery of exendin-4 and an adequate level of insulin were confirmed by analyzing the phosphorylation of Akt. Furthermore, spatial learning ability, evaluated in the Morris water maze test after daily administration of exendin-4 with L-penetratin and supplemental insulin for 4 weeks, suggested therapeutic efficacy against severe cognitive dysfunction. The present study suggests that nose-to-brain delivery of exendin-4 with supplemental insulin, mediated by CPP coadministration, shows promise for the treatment of progressive cognitive dysfunction in SAMP8. Topics: Administration, Intranasal; Amyloid beta-Peptides; Animals; Brain; Cell-Penetrating Peptides; Cognitive Dysfunction; Drug Carriers; Exenatide; Glucagon-Like Peptide 1; Hypoglycemic Agents; Insulin; Male; Memory Disorders; Mice; Signal Transduction | 2018 |
Pioglitazone and exenatide enhance cognition and downregulate hippocampal beta amyloid oligomer and microglia expression in insulin-resistant rats.
Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting. Topics: Amyloid beta-Peptides; Animals; Cognition; Down-Regulation; Drug Therapy, Combination; Exenatide; Fructose; Hippocampus; Insulin Resistance; Male; Maze Learning; Memory Disorders; Microglia; Nootropic Agents; Peptides; Pioglitazone; PPAR gamma; Rats; Rats, Wistar; Thiazolidinediones; Venoms | 2016 |
Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice.
Traumatic brain injury (TBI) is a global problem reaching near epidemic numbers that manifests clinically with cognitive problems that decades later may result in dementias like Alzheimer's disease (AD). Presently, little can be done to prevent ensuing neurological dysfunctions by pharmacological means. Recently, it has become apparent that several CNS diseases share common terminal features of neuronal cell death. The effects of exendin-4 (Ex-4), a neuroprotective agent delivered via a subcutaneous micro-osmotic pump, were examined in the setting of mild TBI (mTBI). Utilizing a model of mTBI, where cognitive disturbances occur over time, animals were subjected to four treatments: sham; Ex-4; mTBI and Ex-4/mTBI. mTBI mice displayed deficits in novel object recognition, while Ex-4/mTBI mice performed similar to sham. Hippocampal gene expression, assessed by gene array methods, showed significant differences with little overlap in co-regulated genes between groups. Importantly, changes in gene expression induced by mTBI, including genes associated with AD were largely prevented by Ex-4. These data suggest a strong beneficial action of Ex-4 in managing secondary events induced by a traumatic brain injury. Topics: Alzheimer Disease; Animals; Behavior, Animal; Brain Injuries; Cognition; Computational Biology; DNA, Complementary; Exenatide; Gene Expression; Glucagon-Like Peptide 1; Hippocampus; Male; Memory Disorders; Mice; Mice, Inbred ICR; Neuroprotective Agents; Peptides; Real-Time Polymerase Chain Reaction; Recognition, Psychology; RNA; Signal Transduction; Venoms | 2013 |
An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease- associated Aβ oligomers.
Defective brain insulin signaling has been suggested to contribute to the cognitive deficits in patients with Alzheimer's disease (AD). Although a connection between AD and diabetes has been suggested, a major unknown is the mechanism(s) by which insulin resistance in the brain arises in individuals with AD. Here, we show that serine phosphorylation of IRS-1 (IRS-1pSer) is common to both diseases. Brain tissue from humans with AD had elevated levels of IRS-1pSer and activated JNK, analogous to what occurs in peripheral tissue in patients with diabetes. We found that amyloid-β peptide (Aβ) oligomers, synaptotoxins that accumulate in the brains of AD patients, activated the JNK/TNF-α pathway, induced IRS-1 phosphorylation at multiple serine residues, and inhibited physiological IRS-1pTyr in mature cultured hippocampal neurons. Impaired IRS-1 signaling was also present in the hippocampi of Tg mice with a brain condition that models AD. Importantly, intracerebroventricular injection of Aβ oligomers triggered hippocampal IRS-1pSer and JNK activation in cynomolgus monkeys. The oligomer-induced neuronal pathologies observed in vitro, including impaired axonal transport, were prevented by exposure to exendin-4 (exenatide), an anti-diabetes agent. In Tg mice, exendin-4 decreased levels of hippocampal IRS-1pSer and activated JNK and improved behavioral measures of cognition. By establishing molecular links between the dysregulated insulin signaling in AD and diabetes, our results open avenues for the investigation of new therapeutics in AD. Topics: Aged; Aged, 80 and over; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antibodies, Monoclonal; Cells, Cultured; Exenatide; Female; Hippocampus; Humans; Hypoglycemic Agents; Infliximab; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Macaca fascicularis; Male; MAP Kinase Signaling System; Maze Learning; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; Neurons; Peptides; Phosphorylation; Protein Processing, Post-Translational; Rats; Venoms | 2012 |