exenatide and Edema

exenatide has been researched along with Edema* in 2 studies

Trials

1 trial(s) available for exenatide and Edema

ArticleYear
Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial.
    Diabetologia, 2011, Volume: 54, Issue:12

    Systemic fibroblast growth factor (FGF)21 levels and hepatic FGF21 production are increased in non-alcoholic fatty liver disease patients, suggesting FGF21 resistance. We examined the effects of exenatide on FGF21 in patients with type 2 diabetes and in a diet-induced mouse model of obesity (DIO).. Type 2 diabetes mellitus patients (n = 24) on diet and/or metformin were randomised (using a table of random numbers) to receive additional treatment consisting of pioglitazone 45 mg/day or combined therapy with pioglitazone (45 mg/day) and exenatide (10 μg twice daily) for 12 months in an open label parallel study at the Baylor Clinic.. Twenty-one patients completed the entire study and were included in the analysis. Pioglitazone treatment (n = 10) reduced hepatic fat as assessed by magnetic resonance spectroscopy, despite a significant increase in body weight (Δ = 3.7 kg); plasma FGF21 levels did not change (1.9  ±  0.6 to 2.2  ±  0.6 ng/ml [mean ± SEM]). However, combined pioglitazone and exenatide therapy (n = 11) was associated with a significant reduction of FGF21 levels (2.3  ±  0.5 to 1.1  ±  0.3 ng/ml) and a greater decrease in hepatic fat. Besides weight gain observed in the pioglitazone-treated patients, lower extremity oedema was observed as a side effect in two of the ten patients. Three patients who received pioglitazone and exenatide combination therapy complained of significant nausea that was self-limiting and did not require them to leave the study. In DIO mice, exendin-4 for 4 weeks significantly reduced hepatic triacylglycerol content, decreased hepatic FGF21 protein and mRNA, and enhanced phosphorylation of hepatic AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase, although no significant difference in weight and body fat was observed. Hepatic FGF21 correlated inversely with hepatic AMPK phosphorylation. In type 2 diabetes mellitus, combined pioglitazone and exenatide therapy is associated with a reduction in plasma FGF21 levels, as well as a greater decrease in hepatic fat than that achieved with pioglitazone therapy. In DIO mice, exendin-4 treatment reduces hepatic triacylglycerol and FGF21 protein, and enhances hepatic AMPK phosphorylation, suggesting an improvement of hepatic FGF21 resistance.. ClinicalTrials.gov NCT 01432405.

    Topics: Adult; Aged; Animals; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Therapy, Combination; Edema; Exenatide; Fatty Liver; Female; Fibroblast Growth Factors; Humans; Hypoglycemic Agents; Liver; Lower Extremity; Male; Metformin; Mice; Middle Aged; Nausea; Non-alcoholic Fatty Liver Disease; Obesity; Peptides; Pioglitazone; Thiazolidinediones; Venoms

2011

Other Studies

1 other study(ies) available for exenatide and Edema

ArticleYear
Exenatide improves random-pattern skin flap survival via TFE3 mediated autophagy augment.
    Journal of cellular physiology, 2021, Volume: 236, Issue:5

    Random-pattern skin flaps are widely applied to rebuild and restore soft-tissue damage in reconstructive surgery; however, ischemia and subsequent ischemia-reperfusion injury lead to flap necrosis and are major complications. Exenatide, a glucagon-like peptide-1 analog, exerts therapeutic benefits for diabetic wounds, cardiac injury, and nonalcoholic fatty liver disease. Furthermore, Exenatide is a known activator of autophagy, which is a complex process of subcellular degradation that may enhance the viability of random skin flaps. In this study, we explored whether exenatide can improve skin flap survival. Our results showed that exenatide augments autophagy, increases flap viability, enhances angiogenesis, reduces oxidative stress, and alleviates pyroptosis. Coadministration of exenatide with 3-methyladenine and chloroquine, potent inhibitors of autophagy, reversed the beneficial effects, suggesting that the therapeutic benefits of exenatide for skin flaps are due largely to autophagy activation. Mechanistically, we identified that exenatide enhanced activation and nuclear translocation of TFE3, which leads to autophagy activation. Furthermore, we found that exenatide activates the AMPK-SKP2-CARM1 and AMPK-mTOR signaling pathways, which likely lead to exenatide's effects on activating TFE3. Overall, our findings suggest that exenatide may be a potent therapy to prevent flap necrosis, and we also reveal novel mechanistic insight into exenatide's effect on flap survival.

    Topics: Adenine; Adenylate Kinase; Animals; Autophagy; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cell Nucleus; Down-Regulation; Edema; Exenatide; Graft Survival; Male; Mice, Inbred C57BL; Neovascularization, Physiologic; Oxidative Stress; Protein Transport; Protein-Arginine N-Methyltransferases; Pyroptosis; Signal Transduction; Skin; Skin Transplantation; TOR Serine-Threonine Kinases; Up-Regulation

2021