exenatide has been researched along with Dyslipidemias* in 6 studies
2 review(s) available for exenatide and Dyslipidemias
Article | Year |
---|---|
New and emerging regulators of intestinal lipoprotein secretion.
Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of dyslipidemia. Here we review recent developments in this field and present evidence that intestinal lipoprotein production is a process with metabolic plasticity and that modulation of intestinal lipoprotein secretion may be a feasible therapeutic strategy in the treatment of dyslipidemia and possibly prevention of atherosclerosis. Topics: Animals; Apolipoprotein B-100; Apolipoprotein B-48; Atherosclerosis; Bile Acids and Salts; Cholesterol; Chylomicrons; Clinical Trials as Topic; Diabetes Mellitus, Type 2; Dietary Carbohydrates; Dietary Fats; Dipeptidyl-Peptidase IV Inhibitors; Drug Evaluation, Preclinical; Dyslipidemias; Exenatide; Fatty Acids, Nonesterified; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Insulin; Insulin Resistance; Intestine, Small; Lipoproteins; Microbiota; Peptides; Receptors, Glucagon; Resveratrol; Secretory Rate; Stilbenes; Triglycerides; Venoms | 2014 |
[Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].
Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. Topics: Blood Glucose; Brain; Cardiovascular Diseases; Clinical Trials as Topic; Diabetes Mellitus, Type 2; Dyslipidemias; Exenatide; Gastric Emptying; Glucagon-Like Peptide 1; Heart; Humans; Hypertension; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Liraglutide; Liver; Meta-Analysis as Topic; Obesity; Peptides; Risk; Venoms; Weight Loss | 2013 |
4 other study(ies) available for exenatide and Dyslipidemias
Article | Year |
---|---|
Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration.
The aetiology of inflammation in the liver and vessel wall, leading to non-alcoholic steatohepatitis (NASH) and atherosclerosis, respectively, shares common mechanisms including macrophage infiltration. To treat both disorders simultaneously, it is highly important to tackle the inflammatory status. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, reduces hepatic steatosis and has been suggested to reduce atherosclerosis; however, its effects on liver inflammation are underexplored. Here, we tested the hypothesis that exendin-4 reduces inflammation in both the liver and vessel wall, and investigated the common underlying mechanism.. Female APOE*3-Leiden.CETP mice, a model with human-like lipoprotein metabolism, were fed a cholesterol-containing Western-type diet for 5 weeks to induce atherosclerosis and subsequently treated for 4 weeks with exendin-4.. Exendin-4 modestly improved dyslipidaemia, but markedly decreased atherosclerotic lesion severity and area (-33%), accompanied by a reduction in monocyte adhesion to the vessel wall (-42%) and macrophage content in the plaque (-44%). Furthermore, exendin-4 reduced hepatic lipid content and inflammation as well as hepatic CD68⁺ (-18%) and F4/80⁺ (-25%) macrophage content. This was accompanied by less monocyte recruitment from the circulation as the Mac-1⁺ macrophage content was decreased (-36%). Finally, exendin-4 reduced hepatic chemokine expression in vivo and suppressed oxidized low-density lipoprotein accumulation in peritoneal macrophages in vitro, effects dependent on the GLP-1 receptor.. Exendin-4 reduces inflammation in both the liver and vessel wall by reducing macrophage recruitment and activation. These data suggest that exendin-4 could be a valuable strategy to treat NASH and atherosclerosis simultaneously. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apolipoprotein E3; Atherosclerosis; Cholesterol Ester Transfer Proteins; Diet, Atherogenic; Disease Models, Animal; Drug Implants; Dyslipidemias; Endothelium, Vascular; Exenatide; Fatty Liver; Female; Glucagon-Like Peptide-1 Receptor; Humans; Hypolipidemic Agents; Liver; Macrophage Activation; Macrophages; Mice; Mice, Transgenic; Non-alcoholic Fatty Liver Disease; Peptides; Random Allocation; Receptors, Glucagon; Venoms | 2014 |
Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes.
Glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is a remedy for type 2 diabetes mellitus (T2DM). Ex-4 ameliorates cardiac dysfunction induced by myocardial infarction in preclinical and clinical settings. However, it remains unclear whether Ex-4 may modulate diabetic cardiomyopathy. We tested the impact of Ex-4 on two types of diabetic cardiomyopathy models, genetic (KK) and acquired T2DM induced by high-fat diet [diet-induced obesity (DIO)], to clarify whether Ex-4 may combat independently of etiology. Each type of mice was divided into Ex-4 (24 nmol·kg(-1)·day(-1) for 40 days; KK-ex4 and DIO-ex4) and vehicle (KK-v and DIO-v) groups. Ex-4 ameliorated systemic and cardiac insulin resistance and dyslipidemia in both T2DM models. T2DM mice exhibited systolic (DIO-v) and diastolic (DIO-v and KK-v) left ventricular dysfunctions, which were restored by Ex-4 with reduction in left ventricular hypertrophy. DIO-v and KK-v exhibited increased myocardial fibrosis and steatosis (lipid accumulation), in which were observed cardiac mitochondrial remodeling and enhanced mitochondrial oxidative damage. Ex-4 treatment reversed these cardiac remodeling and oxidative stress. Cytokine array revealed that Ex-4-sensitive inflammatory cytokines were ICAM-1 and macrophage colony-stimulating factor. Ex-4 ameliorated myocardial oxidative stress via suppression of NADPH oxidase 4 with concomitant elevation of antioxidants (SOD-1 and glutathione peroxidase). In conclusion, GLP-1R agonism reverses cardiac remodeling and dysfunction observed in T2DM via normalizing imbalance of lipid metabolism and related inflammation/oxidative stress. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Diet, High-Fat; Disease Models, Animal; Dyslipidemias; Echocardiography, Doppler; Exenatide; Fibrosis; Glucagon-Like Peptide-1 Receptor; Glutathione Peroxidase; Hypertrophy, Left Ventricular; Hypoglycemic Agents; Inflammation Mediators; Infusions, Subcutaneous; Insulin Resistance; Intercellular Adhesion Molecule-1; Lipid Metabolism; Macrophage Colony-Stimulating Factor; Male; Mice; Mitochondria, Heart; Myocardium; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; Peptides; Receptors, Glucagon; Superoxide Dismutase; Superoxide Dismutase-1; Time Factors; Venoms; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Remodeling | 2013 |
Exendin-4 improves resistance to Listeria monocytogenes infection in diabetic db/db mice.
The incidence of diabetes mellitus is increasing among companion animals. This disease has similar characteristics in both humans and animals. Diabetes is frequently identified as an independent risk factor for infections associated with increased mortality. In the present study, homozygous diabetic (db/db) mice were infected with Listeria (L.) monocytogenes and then treated with the anti-diabetic drug exendin-4, a glucagon-like peptide 1 analogue. In aged db/db mice, decreased CD11b(+) macrophage populations with higher lipid content and lower phagocytic activity were observed. Exendin-4 lowered high lipid levels and enhanced phagocytosis in macrophages from db/db mice infected with L. monocytogenes. Exendin-4 also ameliorated obesity and hyperglycemia, and improved ex vivo bacteria clearance by macrophages in the animals. Liver histology examined during L. monocytogenes infection indicated that abscess formation was much milder in exendin-4-treated db/db mice than in the control animals. Moreover, mechanistic studies demonstrated that expression of ATP binding cassette transporter 1, a sterol transporter, was higher in macrophages isolated from the exendin-4-treated db/db mice. Overall, our results suggest that exendin-4 decreases the risk of infection in diabetic animals by modifying the interaction between intracellular lipids and phagocytic macrophages. Topics: Age Factors; Animals; ATP Binding Cassette Transporter 1; ATP-Binding Cassette Transporters; Blood Chemical Analysis; Cholesterol; Diabetes Mellitus, Type 2; Dyslipidemias; Exenatide; Female; Hyperglycemia; Hypoglycemic Agents; Injections, Intraperitoneal; Lipid Metabolism; Listeria monocytogenes; Listeriosis; Macrophages; Mice; Obesity; Peptides; Phagocytosis; Venoms | 2012 |
GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice.
In addition to improve glucose intolerance, recent studies suggest that glucagon-like peptide-1 (GLP-1) receptor agonism also decreases triglyceride (TG) levels. The aim of this study was to evaluate the effect of GLP-1 receptor agonism on very-low-density lipoprotein (VLDL)-TG production and liver TG metabolism.. The GLP-1 peptide analogues CNTO3649 and exendin-4 were continuously administered subcutaneously to high fat diet-fed APOE*3-Leiden transgenic mice. After 4 weeks, hepatic VLDL production, lipid content, and expression profiles of selected genes involved in lipid metabolism were determined.. CNTO3649 and exendin-4 reduced fasting plasma glucose (up to -30% and -28% respectively) and insulin (-43% and -65% respectively). In addition, these agents reduced VLDL-TG production (-36% and -54% respectively) and VLDL-apoB production (-36% and -43% respectively), indicating reduced production of VLDL particles rather than reduced lipidation of apoB. Moreover, they markedly decreased hepatic content of TG (-39% and -55% respectively), cholesterol (-30% and -55% respectively), and phospholipids (-23% and -36% respectively), accompanied by down-regulation of expression of genes involved in hepatic lipogenesis (Srebp-1c, Fasn, Dgat1) and apoB synthesis (Apob).. GLP-1 receptor agonism reduces VLDL production and hepatic steatosis in addition to an improvement of glycemic control. These data suggest that GLP-receptor agonists could reduce hepatic steatosis and ameliorate dyslipidemia in patients with type 2 diabetes mellitus. Topics: Animals; Apolipoprotein E3; Apolipoproteins B; Blood Glucose; Diabetes Mellitus, Type 2; Dyslipidemias; Exenatide; Fatty Liver; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Insulin; Lipogenesis; Liver; Male; Mice; Mice, Transgenic; Peptides; Receptors, Glucagon; Venoms | 2012 |