exenatide and Diabetic-Angiopathies

exenatide has been researched along with Diabetic-Angiopathies* in 31 studies

Reviews

12 review(s) available for exenatide and Diabetic-Angiopathies

ArticleYear
Effects of exenatide long-acting release on cardiovascular events and mortality in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials.
    Acta diabetologica, 2019, Volume: 56, Issue:9

    Patients with type 2 diabetes (T2D) have an increased risk of cardiovascular disease. Recent cardiovascular outcome trials (CVOTs) with liraglutide, semaglutide, and albiglutide have shown significant reduction in major adverse cardiovascular events. Conversely, the CVOT with exenatide long-acting release (ELAR) confirmed cardiovascular safety of the drug, but did not reached superiority versus placebo. Herein, we systematically evaluated the effect of ELAR versus placebo or active comparators on cardiovascular events and mortality in patients with T2D.. We screened the literature for randomized controlled trials reporting cardiovascular events and deaths in patients receiving ELAR versus those receiving placebo or any other glucose-lowering medications. Event rates were pooled and compared using the random-effects model.. We retrieved 16 trials comparing the occurrence of cardiovascular events and mortality in patients treated with ELAR versus placebo or active comparators. The pooled rate ratio for cardiovascular events was similar in the two groups (0.99; 95% CI 0.92-1.06). The rate ratio for all-cause mortality was significantly lower in exenatide group than in comparators (0.87; 95% CI 0.77-0.97). When results of the EXSCEL trial were omitted, the pooled rate ratio for cardiovascular events and mortality was 0.80 (95% CI 0.40-1.63) and 0.75 (95% CI 0.30-1.84), respectively.. Treatment with ELAR does not increase the risk of cardiovascular events and may reduce all-cause mortality.

    Topics: Cardiovascular Diseases; Cardiovascular System; Cause of Death; Delayed-Action Preparations; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glucagon-Like Peptides; Humans; Incidence; Liraglutide; Male; Middle Aged; Mortality; Randomized Controlled Trials as Topic

2019
Effects of incretin-based therapy in patients with heart failure and myocardial infarction.
    Endocrine, 2014, Volume: 47, Issue:1

    Studies designed to evaluate the short-term effects of incretin-related drugs in subjects with cardiac disease are still preliminary. In patients with heart failure, two of five studies showed that glucagon-like peptide-1 (GLP-1) infusion was associated with an absolute increase in left ventricular ejection fraction (LVEF) by 6-10 %, whereas no significant benefit was observed in the remaining three studies. In patients with coronary artery disease, single infusion of the GLP-1 receptor analog, exenatide, did not increase LVEF, but this drug may decrease infarct size in patients with myocardial infarction presenting with short duration of ischemic symptoms. Single dose of GLP-1 and the dipeptidyl-peptidase-IV (DPP-IV) inhibitor, sitagliptin, may improve left ventricular function, predominantly in ischemic segments, and attenuate post-ischemic stunning. Nausea, vomiting and hypoglycemia were the most common adverse effects associated with GLP-1 and exenatide administration. Increased heart rate was also observed with exenatide in patients with heart failure. Large randomized trials including diabetic patients with preexisting heart failure and myocardial infarction showed that chronic therapy with the DPP-IV inhibitors saxagliptin and alogliptin did not reduce cardiovascular events or mortality. Moreover, saxagliptin use was associated with significant increase in frequency of heart failure requiring hospitalization, hypoglycemia and angioedema. Overall, short-term preliminary data suggest potential cardioprotective effects of exenatide and sitagliptin in patients with heart failure and myocardial infarction. Meanwhile, long-term randomized trials suggest no benefit of alogliptin, and increased harm associated with the use of saxagliptin.

    Topics: Animals; Cardiotonic Agents; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Glucagon-Like Peptide 1; Heart Failure; Humans; Hypoglycemic Agents; Incretins; Myocardial Infarction; Peptides; Venoms

2014
GLP-1R agonist therapy for diabetes: benefits and potential risks.
    Current opinion in endocrinology, diabetes, and obesity, 2013, Volume: 20, Issue:2

    Glucagon-like peptide 1 receptor (GLP-1R) agonists provide good glycemic control combined with low hypoglycemia risk and weight loss. Here, we summarize the recently published data for this therapy class, focusing on sustainability of action, use in combination with basal insulin, and the efficacy of longer acting agents currently in development. The safety profile of GLP-1R agonists is also examined.. GLP-1R agonists provide sustained efficacy and their combination with basal insulin is well tolerated, providing additional glycemic control and weight benefits compared with basal insulin alone. Data suggest that the convenience of longer acting agents may be at the expense of efficacy. Despite the initial concerns, most evidence indicates that GLP-1R agonists do not increase the risk of pancreatitis or thyroid cancer. However, the extremely low incidence of these events means further investigations are required before a causal link can be eliminated. Large-scale clinical trials investigating the long-term cardiovascular safety of this therapy class are ongoing and may also provide important insights into pancreatic and thyroid safety.. GLP-1R agonists offer sustained glycemic efficacy, weight loss benefits, and a low risk of hypoglycemia. The results of ongoing trials should help to clarify the safety of this therapy class.

    Topics: Blood Glucose; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Humans; Hypoglycemia; Hypoglycemic Agents; Immunoglobulin Fc Fragments; Insulin; Liraglutide; Male; Pancreatitis; Peptides; Randomized Controlled Trials as Topic; Recombinant Fusion Proteins; Thyroid Neoplasms; Treatment Outcome; Venoms

2013
Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials.
    Diabetes, obesity & metabolism, 2013, Volume: 15, Issue:8

    Aside from lowering blood glucose, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) attract much attention because of their cardioprotective effects. The aim of this study was to assess the blood pressure-lowering effects of the GLP-1 RAs exenatide and liraglutide compared with other common drugs used to treat type 2 diabetes (T2DM) based on randomized controlled trials (RCTs) including data describing complete blood pressure (BP) changes from baseline.. We searched the major databases for published or unpublished RCTs that had been performed in patients with T2DM and compared the effects of exenatide and liraglutide to those of other common drugs used to treat T2DM. The RCTs that included data describing BP changes between the baseline and the end of the study were selected for further analysis.. A total of 16 RCTs that enrolled 3443 patients in the GLP-1 RA treatment group and 2417 subjects in the control group were included in this meta-analysis. The GLP-1 RA exenatide reduced systolic blood pressure (SBP) when compared with both placebo and insulin glargine, with mean differences of -5.24 and -3.46 mmHg, respectively, and with 95% confidence intervals (CI) of -6.88 to -3.59, p < 0.00001 and -3.63 to -3.29, p < 0.00001, respectively. Meanwhile, in the exenatide-treated group, diastolic blood pressure (DBP) was reduced by -5.91 mmHg, with a 95% CI of -7.53 to -4.28, p < 0.00001 compared with the placebo group, and -0.99 mmHg with a 95% CI of -1.12 to -0.87, p < 0.00001 compared with the sitagliptin group. SBP changes in this meta-analysis were assessed in the groups treated with 1.2 or 1.8 mg liraglutide per day. In the 1.2 mg-treated group, liraglutide treatment reduced SBP compared with placebo and glimepiride treatment, with mean differences of -5.60 and -2.38 mmHg, and 95% CIs of -5.84 to -5.36, p < 0.00001 and -4.75 to -0.01, p = 0.05, respectively. In the 1.8-mg-treated group, liraglutide also reduced SBP compared with placebo and glimepiride treatment with mean differences of -4.49 and -2.62 mmHg, and a 95% CI of -4.73 to -4.26, p < 0.00001, and -2.91 to -2.33, p < 0.00001, respectively.. Treatment with the GLP-1 RAs exenatide and liraglutide reduced SBP and DBP by 1 to 5 mmHg compared with some other anti-diabetic drugs including insulin, glimepiride and placebo for patients with T2DM. GLP-1 RAs may offer an alternative therapy for these patients and will help provide extra cardiovascular benefits.

    Topics: Blood Glucose; Blood Pressure; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypertension; Hypoglycemic Agents; Insulin; Liraglutide; Male; Peptides; Randomized Controlled Trials as Topic; Receptors, Glucagon; Sulfonylurea Compounds; Treatment Outcome; Venoms

2013
The potential risks of pancreatitis and pancreatic cancer with GLP-1-based therapies are far outweighed by the proven and potential (cardiovascular) benefits.
    Diabetic medicine : a journal of the British Diabetic Association, 2013, Volume: 30, Issue:10

    Recent suggestions that glucagon-like peptide-1 (GLP-1)-based therapies could cause pancreatitis, and even pancreatic cancer, are based on:. The worrying histological changes are not reproduced in all studies and are unexpectedly variable with different GLP-1-based therapies.. Singh's findings that pancreatitis is doubled with GLP-1-based therapies could relate to their use in obese patients who are prone to pancreatitis risk factors--gallstones and hypertriglyceridaemia. The other observational studies do not find an association between GLP-1-based therapies and pancreatitis.. The increased reports of pancreatitis and pancreatic cancer are likely to be attributable to 'notoriety bias'.. Butler's findings for those on GLP-1-based therapies vs. those not, could have other explanations. Meanwhile: META ANALYSIS: Randomized control trials with GLP-1-based therapies do not find increased pancreatitis risk. Meta-analysis of 53 randomized controlled trials including 20 212 dipeptidyl peptidase-4 inhibitor-treated patients found a significantly reduced risk of major adverse cardiovascular events [odds ratio 0.689 (0.528-0.899), P = 0.006] for dipeptidyl peptidase-4 inhibitors compared with control subjects.. The evidence suggests that there is more than a possibility that some of the GLP-1 receptor agonists, and possibly also some dipeptidyl peptidase-4 inhibitors, may be associated with reduced cardiovascular events. Eight ongoing long-term cardiovascular randomized controlled trials will report from September 2013 onwards. These trials should resolve the issue of pancreatitis risk and substantiate the extent of benefit.. Whilst we should remain vigilant, currently the balance of evidence is strongly in support of GLP-1-based therapy, with benefits far outweighing potential risks.

    Topics: Adverse Drug Reaction Reporting Systems; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl-Peptidase IV Inhibitors; Exenatide; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Liraglutide; Male; Pancreatic Neoplasms; Pancreatitis; Patient Selection; Peptides; Randomized Controlled Trials as Topic; Receptors, Glucagon; Risk Assessment; Risk Factors; Venoms

2013
Type 1 diabetes and cardiovascular disease.
    Cardiovascular diabetology, 2013, Oct-28, Volume: 12

    The presence of cardiovascular disease (CVD) in Type 1 diabetes largely impairs life expectancy. Hyperglycemia leading to an increase in oxidative stress is considered to be the key pathophysiological factor of both micro- and macrovascular complications. In Type 1 diabetes, the presence of coronary calcifications is also related to coronary artery disease. Cardiac autonomic neuropathy, which significantly impairs myocardial function and blood flow, also enhances cardiac abnormalities. Also hypoglycemic episodes are considered to adversely influence cardiac performance. Intensive insulin therapy has been demonstrated to reduce the occurrence and progression of both micro- and macrovascular complications. This has been evidenced by the Diabetes Control and Complications Trial (DCCT) / Epidemiology of Diabetes Interventions and Complications (EDIC) study. The concept of a metabolic memory emerged based on the results of the study, which established that intensified insulin therapy is the standard of treatment of Type 1 diabetes. Future therapies may also include glucagon-like peptide (GLP)-based treatment therapies. Pilot studies with GLP-1-analogues have been shown to reduce insulin requirements.

    Topics: Antihypertensive Agents; Autonomic Nervous System Diseases; Cardiovascular Diseases; Diabetes Mellitus, Type 1; Diabetic Angiopathies; Diabetic Neuropathies; Drug Therapy, Combination; Exenatide; Exercise Therapy; Glucagon-Like Peptide 1; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Insulin; Oxidative Stress; Peptides; Pyrazines; Sitagliptin Phosphate; Triazoles; Venoms

2013
Cardiovascular effects of incretins in diabetes.
    Canadian journal of diabetes, 2013, Volume: 37, Issue:5

    Recent years have seen an enormous increase in the number of therapeutic agents available for lowering blood glucose levels in people with type 2 diabetes. Among these agents, the incretin mimetics glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists and dipeptidyl peptidase 4 (DPP4) inhibitors have received particular attention for the potential of these interventions to positively impact on cardiovascular outcomes. Although the results of large-scale cardiovascular outcome trials eagerly are anticipated, an increasing body of literature from preclinical and early phase clinical studies has indicated that both GLP-1R agonists and DPP4 inhibitors may exert glucose-independent cardiovascular effects. Despite its role in glucose homeostasis, the GLP-1R is surprisingly widely distributed throughout the body, including in the heart. GLP-1 may exert its effects through both receptor-dependent and receptor-independent mechanisms and through the actions of both the intact peptide and its metabolites. In addition, DPP4 inhibition not only augments the circulating levels of incretin hormones, but it also holds the capacity to augment the activity of other biologically important substrates, most notably the small protein stromal cell-derived factor 1 alpha. Whether these collective functions will act to reduce cardiovascular events in patients remains to be determined.

    Topics: Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl-Peptidase IV Inhibitors; Endothelium, Vascular; Exenatide; Female; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Liraglutide; Male; Myocytes, Cardiac; Peptides; Treatment Outcome; Venoms

2013
Evolution of exenatide as a diabetes therapeutic.
    Current diabetes reviews, 2013, Mar-01, Volume: 9, Issue:2

    Type 2 diabetes (T2DM) is a disease of epidemic proportion associated with significant morbidity and excess mortality. Optimal glucose control reduces the risk of microvascular and possibly macrovascular complications due to diabetes. However, glycemic control is rarely optimal and several therapeutic interventions for the treatment of diabetes cause hypoglycemia and weight gain; some may exacerbate cardiovascular risk. Exenatide (synthetic exendin-4) is a glucagon- like peptide-1 receptor (GLP-1R) agonist developed as a first-in-class diabetes therapy. This review presents an overview of the evolution of exenatide as a T2DM treatment, beginning with the seminal preclinical discoveries and continuing through to clinical pharmacology investigations and phase 3 clinical trials. In patients with T2DM, exenatide enhanced glucose-dependent insulin secretion, suppressed inappropriately elevated glucagon secretion, slowed gastric emptying, and enhanced satiety. In controlled phase 3 clinical trials ranging from 12 to 52 weeks, 10-mcg exenatide twice daily (ExBID) reduced mean HbA1c by -0.8% to -1.7% as monotherapy or in combination with metformin (MET), sulfonylureas (SFU), and/or thiazolidinediones (TZD); with mean weight losses of -1.2 kg to -8.0 kg. In controlled phase 3 trials ranging from 24 to 30 weeks, a 2-mg once-weekly exenatide formulation (ExQW) reduced mean HbA1c by -1.3% to -1.9%, with mean weight reductions of -2.3 to -3.7 kg. Exenatide was generally well-tolerated. The most common side effects were gastrointestinal in nature, mild, and transient. Nausea was the most prevalent adverse event. The incidence of hypoglycemia was generally low. By building upon early observations exenatide was successfully developed into an effective diabetes therapy.

    Topics: Animals; Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Drug Therapy, Combination; Exenatide; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Metformin; Mice; Mice, Knockout; Models, Animal; Nausea; Peptides; Sulfonylurea Compounds; Thiazolidinediones; Venoms; Weight Loss

2013
Harnessing the incretin system beyond glucose control: potential cardiovascular benefits of GLP-1 receptor agonists in type 2 diabetes.
    Diabetes & metabolism, 2012, Volume: 38, Issue:4

    The management of type 2 diabetes continues to evolve as new data emerge. Although glycaemic control is still important, other risk factors--such as hypertension, dyslipidaemia and obesity--must also be addressed in order to reduce the long-term risks of cardiovascular complications and mortality. In this context, targeting the incretin system, and glucagon-like peptide-1 (GLP-1) in particular, has generated much interest. GLP-1 is released from the gut in response to food ingestion and plays a crucial role in glucose homeostasis. GLP-1 receptors are expressed in the heart and vasculature, prompting evaluation of their physiological role and pharmacological stimulation, both in healthy and disease states. These studies indicate that GLP-1 and GLP-1-based therapies appear to have direct, beneficial effects on the cardiovascular system, in addition to their glucose-lowering properties, such as modulation of blood pressure, endothelial function, and myocardial contractility. Intriguingly, some of these effects appear to be independent of GLP-1 receptor signalling. Data from clinical studies of the GLP-1 receptor agonists, exenatide and liraglutide on cardiovascular risk factors, in patients with type 2 diabetes are also promising and the results from prospective studies to assess cardiovascular outcomes are eagerly awaited.

    Topics: Animals; Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl-Peptidase IV Inhibitors; Endothelial Cells; Endothelium, Vascular; Exenatide; Glucagon-Like Peptide 1; Humans; Incretins; Liraglutide; Mice; Peptides; Prospective Studies; Risk Factors; Treatment Outcome; Venoms

2012
Beyond glucose lowering: glucagon-like peptide-1 receptor agonists, body weight and the cardiovascular system.
    Diabetes & metabolism, 2011, Volume: 37, Issue:6

    Glucagon-like peptide-1 (GLP-1) belongs to the incretin hormone family: in the presence of elevated blood glucose, it stimulates insulin secretion and inhibits glucagon production. In addition, GLP-1 slows gastric emptying. GLP-1 secretion has also been reported to potentially affect patients with type 2 diabetes (T2DM) compared with non-diabetics and, as enzymatic inactivation by dipeptidyl peptidase-4 (DPP-4) shortens the GLP-1 half-life to a few minutes, GLP-1 receptor agonists such as exenatide twice daily (BID) and liraglutide have been developed, and have become part of the management of patients with T2DM. This review focuses on the potential beneficial effects of these compounds beyond those associated with improvements in blood glucose control and weight loss, including changes in the cardiovascular and central nervous systems.. This was a state-of-the-art review of the literature to evaluate the relationships between GLP-1, GLP-1 receptor agonists, weight and the cardiovascular system.. GLP-1 receptor agonists improve glucose control and do not significantly increase the risk of hypoglycaemia. Also, this new class of antidiabetic drugs was shown to favour weight loss. Mechanisms may involve central action, direct action by reduction of food intake and probably indirect action through slowing of gastric emptying. The relative importance of each activity remains unclear. Weight loss may improve cardiovascular outcomes in patients with T2DM, although GLP-1 receptor agonists may have other direct and indirect effects on the cardiovascular system. Reductions in myocardial infarct size and improvements in cardiac function have been seen in animal models. Beneficial changes in cardiac function were also demonstrated in patients with myocardial infarcts or heart failure. Indirect effects could involve a reduction in blood pressure and potential effects on oxidation. However, the mechanisms involved in the pleiotropic effects of GLP-1 receptor agonists have yet to be completely elucidated and require further study.. These compounds may play an important role in the treatment of patients with T2DM as their potential effects go beyond glucose-lowering (weight loss, potential improvement of cardiovascular risk factors). However, to better understand their place in the management of T2DM, further experimental and clinical prospective studies are required.

    Topics: Body Weight; Cardiovascular System; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Half-Life; Humans; Hypoglycemic Agents; Liraglutide; Peptides; Receptors, Glucagon; Venoms

2011
Exenatide as a treatment for diabetes and obesity: implications for cardiovascular risk reduction.
    Current atherosclerosis reports, 2008, Volume: 10, Issue:1

    Among the challenges in improving outcomes in patients with diabetes is effectively implementing existing pharmacotherapies. However, current therapies for diabetes are often limited by adverse effects such as edema, hypoglycemia, and weight gain. Understanding the role of the incretin effect on the pathophysiology of diabetes has led to the development of new therapeutic agents. Exenatide is the first in a new class of agents termed "incretin mimetics," which replicate several glucoregulatory effects of the endogenous incretin hormone, glucagon-like peptide-1. In clinical trials, patients with type 2 diabetes treated with exenatide demonstrate sustained improvements in glycemic control, with reductions in fasting and postprandial glucose levels and improvements in glycosylated hemoglobin levels. Improvements in glycemic control with exenatide are coupled with reductions in body weight. Lipid parameters, blood pressure, and C-reactive protein have been shown to improve favorably in patients treated with exenatide. The sustained glycemic improvements and progressive reduction in body weight with exenatide treatment support a shift toward a more favorable cardiovascular risk profile and may have a positive impact on decreasing the risk of associated long-term complications.

    Topics: C-Reactive Protein; Comorbidity; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Insulin; Obesity; Peptides; Protein Binding; Risk Factors; Venoms; Weight Loss

2008
Metabolic effects of the incretin mimetic exenatide in the treatment of type 2 diabetes.
    Vascular health and risk management, 2006, Volume: 2, Issue:1

    Interventional studies have demonstrated the impact of hyperglycemia on the development of vascular complications associated with type 2 diabetes, which underscores the importance of safely lowering glucose to as near-normal as possible. Among the current challenges to reducing the risk of vascular disease associated with diabetes is the management of body weight in a predominantly overweight patient population, and in which weight gain is likely with many current therapies. Exenatide is the first in a new class of agents termed incretin mimetics, which replicate several glucoregulatory effects of the endogenous incretin hormone, glucagon-like peptide-1 (GLP-1). Currently approved in the US as an injectable adjunct to metformin and/or sulfonylurea therapy, exenatide improves glycemic control through multiple mechanisms of action including: glucose-dependent enhancement of insulin secretion that potentially reduces the risk of hypoglycemia compared with insulin secretagogues; restoration of first-phase insulin secretion typically deficient in patients with type 2 diabetes; suppression of inappropriately elevated glucagon secretion to reduce postprandial hepatic output; and slowing the rate of gastric emptying to regulate glucose appearance into the circulation. Clinical trials in patients with type 2 diabetes treated with subcutaneous exenatide twice daily demonstrated sustained improvements in glycemic control, evidenced by reductions in postprandial and fasting glycemia and glycosylated hemoglobin (HbA(1c)) levels. Notably, improvements in glycemic control with exenatide were coupled with progressive reductions in body weight, which represents a distinct therapeutic benefit for patients with type 2 diabetes. Acute effects of exenatide on beta-cell responsiveness along with significant reductions in body weight in patients with type 2 diabetes may have a positive impact on disease progression and potentially decrease the risk of associated long-term complications.

    Topics: Blood Glucose; Body Weight; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Glucagon-Like Peptide 1; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Insulin-Secreting Cells; Molecular Mimicry; Obesity; Peptides; Treatment Outcome; Venoms

2006

Trials

8 trial(s) available for exenatide and Diabetic-Angiopathies

ArticleYear
Within-Trial Evaluation of Medical Resources, Costs, and Quality of Life Among Patients With Type 2 Diabetes Participating in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL).
    Diabetes care, 2020, Volume: 43, Issue:2

    To compare medical resource use, costs, and health utilities for 14,752 patients with type 2 diabetes who were randomized to once-weekly exenatide (EQW) or placebo in addition to usual diabetes care in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL).. Medical resource use data and responses to the EuroQol 5-Dimension (EQ-5D) instrument were collected at baseline and throughout the trial. Medical resources and medications were assigned values by using U.S. Medicare payments and wholesale acquisition costs, respectively. Secondary analyses used English costs.. Patients were followed for an average of 3.3 years, during which time those randomized to EQW experienced 0.41 fewer inpatient days (7.05 vs. 7.46 days; relative rate ratio 0.91;. Medical costs were lower in the EQW arm than the placebo arm, but total costs were significantly higher once the cost of branded exenatide was incorporated.

    Topics: Adult; Aged; Aged, 80 and over; Cardiovascular Diseases; Cause of Death; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Follow-Up Studies; Health Care Costs; Health Resources; Hospitalization; Humans; Hypoglycemic Agents; Incidence; Intention to Treat Analysis; Male; Medicare; Middle Aged; Quality of Life; United Kingdom; United States

2020
Confirming the Bidirectional Nature of the Association Between Severe Hypoglycemic and Cardiovascular Events in Type 2 Diabetes: Insights From EXSCEL.
    Diabetes care, 2020, Volume: 43, Issue:3

    We sought to confirm a bidirectional association between severe hypoglycemic events (SHEs) and cardiovascular (CV) event risk and to characterize individuals at dual risk.. In a post hoc analysis of 14,752 Exenatide Study of Cardiovascular Event Lowering (EXSCEL) participants, we examined time-dependent associations between SHEs and subsequent major adverse cardiac events (CV death, nonfatal myocardial infarction [MI] or stroke), fatal/nonfatal MI, fatal/nonfatal stroke, hospitalization for acute coronary syndrome (hACS), hospitalization for heart failure (hHF), and all-cause mortality (ACM), as well as time-dependent associations between nonfatal CV events and subsequent SHEs.. SHEs were uncommon and not associated with once-weekly exenatide therapy (hazard ratio 1.13 [95% CI 0.94-1.36],. These findings, showing greater risk of SHEs after CV events as well as greater risk of CV events after SHEs, validate a bidirectional relationship between CV events and SHEs in patients with high comorbidity scores.

    Topics: Acute Coronary Syndrome; Aged; Cardiovascular Diseases; Comorbidity; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Double-Blind Method; Exenatide; Female; Hospitalization; Humans; Hypoglycemia; Hypoglycemic Agents; Male; Middle Aged; Myocardial Infarction; Risk Factors; Severity of Illness Index; Stroke

2020
Efficacy and tolerability of the new autoinjected suspension of exenatide once weekly versus exenatide twice daily in patients with type 2 diabetes.
    Diabetes, obesity & metabolism, 2018, Volume: 20, Issue:1

    To simplify administration of aqueous exenatide once weekly, which requires reconstitution, the exenatide microspheres have been reformulated in a ready-to-use autoinjector with a Miglyol diluent (exenatide QWS-AI). This study compared the efficacy and safety of exenatide QWS-AI with the first-in-class glucagon-like peptide-1 receptor agonist exenatide twice daily (BID).. This randomized, open-label, controlled study in patients with type 2 diabetes using diet and exercise or taking stable oral glucose-lowering medication randomized patients 3:2 to either exenatide QWS-AI (2 mg) or exenatide BID (10 μg) for 28 weeks. The primary outcome was the 28-week change in glycated haemoglobin (HbA1c). A subset of patients completed a standardized meal test for postprandial and pharmacokinetic assessments.. A total of 375 patients (mean HbA1c, 8.5% [69 mmol/mol]; body mass index, 33.2 kg/m. Exenatide QWS-AI was associated with a greater reduction in HbA1c, similar weight loss and a favorable gastrointestinal AE profile compared with exenatide BID.

    Topics: Cardiovascular Diseases; Cohort Studies; Combined Modality Therapy; Delayed-Action Preparations; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Cardiomyopathies; Drug Administration Schedule; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Incretins; Injections, Jet; Intention to Treat Analysis; Male; Middle Aged; Patient Dropouts; Peptides; Risk Factors; Severity of Illness Index; Suspensions; United States; Venoms

2018
Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes.
    Journal of diabetes and its complications, 2017, Volume: 31, Issue:2

    Exercise is recommended as a cornerstone of treatment for type 2 diabetes mellitus (T2DM), however, it is often poorly adopted by patients. Even in the absence of apparent cardiovascular disease, persons with T2DM have an impaired ability to carry out maximal and submaximal exercise and these impairments are correlated with cardiac and endothelial dysfunction. Glucagon-like pepetide-1 (GLP-1) augments endothelial and cardiac function in T2DM. We hypothesized that administration of a GLP-1 agonist (exenatide) would improve exercise capacity in T2DM.. Administration of exenatide improved cardiac function and reduced arterial stiffness, however, these changes were not accompanied by improved functional exercise capacity. In order to realize the benefits of this drug on exercise capacity, combining exenatide with aerobic exercise training in participants with T2DM may be warranted.

    Topics: Aged; Arteries; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Cardiomyopathies; Double-Blind Method; Endothelium, Vascular; Exenatide; Exercise Tolerance; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Heart Ventricles; Humans; Hypoglycemic Agents; Male; Middle Aged; Oxygen Consumption; Peptides; Pulse Wave Analysis; Sedentary Behavior; Vascular Stiffness; Venoms; Ventricular Dysfunction, Left

2017
Efficacy and safety of autoinjected exenatide once-weekly suspension versus sitagliptin or placebo with metformin in patients with type 2 diabetes: The DURATION-NEO-2 randomized clinical study.
    Diabetes, obesity & metabolism, 2017, Volume: 19, Issue:7

    Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors treat type 2 diabetes through incretin-signaling pathways. This study compared the efficacy and safety of the glucagon-like peptide-1 receptor agonist exenatide once-weekly (Miglyol) suspension for autoinjection (QWS-AI) with the dipeptidyl peptidase-4 inhibitor sitagliptin or placebo.. In this open-label, multicentre study of patients with type 2 diabetes who had suboptimal glycaemic control on metformin monotherapy, 365 patients were randomized to receive exenatide 2.0 mg QWS-AI, sitagliptin 100 mg once daily or oral placebo (3:2:1 ratio). The primary endpoint was change in glycated hemoglobin (HbA1c) from baseline to 28 weeks.. At 28 weeks, exenatide QWS-AI significantly reduced HbA1c from baseline compared to sitagliptin (-1.13% vs -0.75% [baseline values, 8.42% and 8.50%, respectively]; P  = .02) and placebo (-0.40% [baseline value, 8.50%]; P = .001). More exenatide QWS-AI-treated patients achieved HbA1c <7.0% than did sitagliptin- or placebo-treated patients (43.1% vs 32.0% and 24.6%; both P  < .05). Exenatide QWS-AI and sitagliptin reduced fasting plasma glucose from baseline to 28 weeks (-21.3 and -11.3 mg/dL) vs placebo (+9.6 mg/dL), with no significant difference between the 2 active treatments. Body weight decreased with both active treatments (-1.12 and -1.19 kg), but not with placebo (+0.15 kg). No improvement in blood pressure was observed in any group. The most common adverse events with exenatide QWS-AI were gastrointestinal events and injection-site reactions.. This study demonstrated that exenatide QWS-AI reduced HbA1c more than sitagliptin or placebo and was well tolerated.

    Topics: Cardiovascular Diseases; Cohort Studies; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Cardiomyopathies; Drug Therapy, Combination; Excipients; Exenatide; Female; Glycated Hemoglobin; Humans; Hyperglycemia; Hypoglycemic Agents; Incidence; Incretins; Injections, Jet; Male; Metformin; Middle Aged; Peptides; Sitagliptin Phosphate; Triglycerides; United States; Venoms

2017
Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner.
    American journal of physiology. Endocrinology and metabolism, 2016, Jun-01, Volume: 310, Issue:11

    Glucagon-like peptide-1 (GLP-1) may have direct favorable effects on cardiovascular system. The aim of this study was to investigate the effects of the GLP-1 analog exenatide on improving coronary endothelial function in patients with type 2 diabetes and to investigate the underlying mechanisms. The newly diagnosed type 2 diabetic subjects were enrolled and given either lifestyle intervention or lifestyle intervention plus exenatide treatment. After 12-wk treatment, coronary flow velocity reserve (CFVR), an important indicator of coronary endothelial function, was improved significantly, and serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were remarkably decreased in the exenatide treatment group compared with the baseline and the control group. Notably, CFVR was correlated inversely with hemoglobin A1c (Hb A1c) and positively with high-density lipoprotein cholesterol (HDL-C). In human umbilical vein endothelial cells, exendin-4 (a form of exenatide) significantly increased NO production, endothelial NO synthase (eNOS) phosphorylation, and GTP cyclohydrolase 1 (GTPCH1) level in a dose-dependent manner. The GLP-1 receptor (GLP-1R) antagonist exendin (9-39) or GLP-1R siRNA, adenylyl cyclase inhibitor SQ-22536, AMPK inhibitor compound C, and PI3K inhibitor LY-294002 abolished the effects of exendin-4. Furthermore, exendin-4 reversed homocysteine-induced endothelial dysfunction by decreasing sICAM-1 and reactive oxygen species (ROS) levels and upregulating NO production and eNOS phosphorylation. Likewise, exendin (9-39) diminished the protective effects of exendin-4 on the homocysteine-induced endothelial dysfunction. In conclusion, exenatide significantly improves coronary endothelial function in patients with newly diagnosed type 2 diabetes. The effect may be mediated through activation of AMPK/PI3K-Akt/eNOS pathway via a GLP-1R/cAMP-dependent mechanism.

    Topics: Adult; AMP-Activated Protein Kinases; Cardiotonic Agents; Diabetic Angiopathies; Dose-Response Relationship, Drug; Echocardiography; Endothelium, Vascular; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Male; Middle Aged; Multienzyme Complexes; Nitric Oxide Synthase Type III; Oncogene Protein v-akt; Peptides; Signal Transduction; Venoms

2016
Design of FLAT-SUGAR: Randomized Trial of Prandial Insulin Versus Prandial GLP-1 Receptor Agonist Together With Basal Insulin and Metformin for High-Risk Type 2 Diabetes.
    Diabetes care, 2015, Volume: 38, Issue:8

    Glycemic variability may contribute to adverse medical outcomes of type 2 diabetes, but prior therapies have had limited success in controlling glycemic fluctuations, and the hypothesis has not been adequately tested.. People with insulin-requiring type 2 diabetes and high cardiovascular risk were enrolled during a run-in period on basal-bolus insulin (BBI), and 102 were randomized to continued BBI or to basal insulin with a prandial GLP-1 receptor agonist (GLIPULIN) group, each seeking to maintain HbA(1c) levels between 6.7% and 7.3% (50-56 mmol/mol) for 6 months. The primary outcome measure was glycemic variability assessed by continuous glucose monitoring; other measures were HbA(1c), weight, circulating markers of inflammation and cardiovascular risk, albuminuria, and electrocardiographic patterns assessed by Holter monitoring.. At randomization, the mean age of the population was 62 years, median duration of diabetes 15 years, mean BMI 34 kg/m(2), and mean HbA(1c) 7.9% (63 mmol/mol). Thirty-three percent had a prior cardiovascular event, 18% had microalbuminuria, and 3% had macroalbuminuria. At baseline, the continuous glucose monitoring coefficient of variation for glucose levels was similar in both groups.. FLAT-SUGAR is a proof-of-concept study testing whether, in a population of individuals with type 2 diabetes and high cardiovascular risk, the GLIPULIN regimen can limit glycemic variability more effectively than BBI, reduce levels of cardiovascular risk markers, and favorably alter albuminuria and electrocardiographic patterns. We successfully randomized a population that has sufficient power to answer the primary question, address several secondary ones, and complete the protocol as designed.

    Topics: Albuminuria; Biomarkers; Blood Glucose; Body Weight; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Insulin Glargine; Insulin, Long-Acting; Male; Metformin; Middle Aged; Peptides; Postprandial Period; Risk Factors; Time Factors; Venoms

2015
Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes.
    Diabetes, obesity & metabolism, 2006, Volume: 8, Issue:4

    Exenatide, an incretin mimetic for the adjunct treatment of type 2 diabetes (DM2), reduced A1C and weight in 30-week placebo-controlled trials. This analysis examined the effects of exenatide on glycaemic control and weight over an 82-week period in patients with DM2 unable to achieve adequate glycaemic control with sulphonylurea (SU) and/or metformin (MET).. This interim analysis is of 314 patients who received exenatide in the 30-week placebo-controlled trials and subsequently in 52 weeks of open-label uncontrolled extension studies for 82 weeks of exenatide in total. Patients continued their SU and/or MET regimens throughout.. Patients completed 82 weeks of exenatide treatment [n = 314, 63% M, age 56 +/- 10 years, weight 99 +/- 21 kg, body mass index 34 +/- 6 kg/m2, A1C 8.3 +/- 1.0% (mean +/- SD)]. Reduction in A1C from baseline to week 30 [-0.9 +/- 0.1% (mean +/- SE)] was sustained to week 82 (-1.1 +/- 0.1%), with 48% of patients achieving A1C < or = 7% at week 82. At week 30, exenatide reduced body weight (a secondary endpoint) from baseline (-2.1 +/- 0.2 kg), with progressive reduction at week 82 (-4.4 +/- 0.3 kg). Similar results were observed for the intent-to-treat population (n = 551), with reductions in A1C and weight at week 82 of -0.8 +/- 0.1% and -3.5 +/- 0.2 kg respectively. The 82-week completer cohort showed statistically significant improvement in some cardiovascular risk factors. The most frequent adverse events were generally mild-to-moderate nausea and hypoglycaemia.. In summary, 82 weeks of adjunctive exenatide treatment in patients with DM2 treated with SU and/or MET resulted in sustained reduction in A1C and progressive reduction in weight, as well as improvement in some cardiovascular risk factors.

    Topics: Adolescent; Adult; Aged; Blood Glucose; Blood Pressure; Body Weight; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Double-Blind Method; Drug Therapy, Combination; Exenatide; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Lipids; Male; Metformin; Middle Aged; Overweight; Peptides; Risk Factors; Sulfonylurea Compounds; Venoms; Weight Loss

2006

Other Studies

11 other study(ies) available for exenatide and Diabetic-Angiopathies

ArticleYear
Similar effectiveness of dapagliflozin and GLP-1 receptor agonists concerning combined endpoints in routine clinical practice: A multicentre retrospective study.
    Diabetes, obesity & metabolism, 2019, Volume: 21, Issue:8

    According to cardiovascular outcome trials, some sodium-glucose contransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) are recommended for secondary cardiovascular prevention in type 2 diabetes (T2D). In this real-world study, we compared the simultaneous reductions in HbA1c, body weight and systolic blood pressure after initiation of dapagliflozin or GLP-1RA as second or a more advanced line of therapy.. DARWIN-T2D was a retrospective multi-centre study conducted at diabetes specialist clinics in Italy that compared T2D patients who initiated dapagliflozin or GLP-1RA (exenatide once weekly or liraglutide). Data were collected at baseline and at the first follow-up visit after 3 to 12 months. The primary endpoint was the proportion of patients achieving a simultaneous reduction in HbA1c, body weight and systolic blood pressure. To reduce confounding, we used multivariable adjustment (MVA) or propensity score matching (PSM).. Totals of 473 patients initiating dapagliflozin and 336 patients initiating GLP-1RA were included. The two groups differed in age, diabetes duration, HbA1c, weight and concomitant medications. The median follow-up was 6 months in both groups. Using MVA or PSM, the primary endpoint was observed in 30% to 32% of patients, with no difference between groups. Simultaneous reduction of HbA1c, BP and SBP by specific threshold, as well as achievement of final goals, did not differ between groups. GLP-1RA reduced HbA1c by 0.3% more than the reduction achieved with dapagliflozin.. In routine specialist care, initiation of dapagliflozin can be as effective as initiation of a GLP-1RA for attainment of combined risk factor goals.

    Topics: Adult; Aged; Benzhydryl Compounds; Blood Glucose; Blood Pressure; Body Weight; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Drug Therapy, Combination; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Glucosides; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Liraglutide; Male; Middle Aged; Retrospective Studies; Treatment Outcome

2019
Cost-effectiveness of exenatide twice daily vs insulin glargine as add-on therapy to oral antidiabetic agents in patients with type 2 diabetes in China.
    Diabetes, obesity & metabolism, 2017, Volume: 19, Issue:12

    To estimate the long-term cost-effectiveness of exenatide twice daily vs insulin glargine once daily as add-on therapy to oral antidiabetic agents (OADs) for Chinese patients with type 2 diabetes (T2DM).. The Cardiff Diabetes Model was used to simulate disease progression and estimate the long-term effects of exenatide twice daily vs insulin glargine once daily. Patient profiles and treatment effects required for the model were obtained from literature reviews (English and Chinese databases) and from a meta-analysis of 8 randomized controlled trials comparing exenatide twice daily with insulin glargine once daily add-on to OADs for T2DM in China. Medical expenditure data were collected from 639 patients with T2DM (aged ≥18 years) with and without complications incurred between January 1, 2014 and December 31, 2015 from claims databases in Shandong, China. Costs (2014 Chinese Yuan [¥]) and benefits were estimated, from the payers' perspective, over 40 years at a discount rate of 3%. A series of sensitivity analyses were performed.. Patients on exenatide twice daily + OAD had a lower predicted incidence of most cardiovascular and hypoglycaemic events and lower total costs compared with those on insulin glargine once daily + OAD. A greater number of quality-adjusted life years (QALYs; 1.94) at a cost saving of ¥117 706 gained was associated with exenatide twice daily vs insulin glargine once daily. (i.e. cost saving of ¥60 764/QALY) per patient.. In Chinese patients with T2DM inadequately controlled by OADs, exenatide twice daily is a cost-effective add-on therapy alternative to insulin glargine once daily, and may address the problem of an excess of medical needs resulting from weight gain and hypoglycaemia in T2DM treatment.

    Topics: Administration, Oral; Cardiovascular Diseases; China; Cost-Benefit Analysis; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Cardiomyopathies; Direct Service Costs; Drug Administration Schedule; Drug Therapy, Combination; Exenatide; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Incidence; Incretins; Injections, Subcutaneous; Insulin Glargine; Middle Aged; Models, Economic; Peptides; Quality of Life; Randomized Controlled Trials as Topic; Venoms

2017
Relationship of vascular complications and exenatide therapy failure in type 2 diabetic patients.
    Acta clinica Croatica, 2013, Volume: 52, Issue:3

    Exenatide is an incretin mimetic that acts through glucagon-like peptide 1 receptor accepted as a successful novel glucose-lowering agent in type 2 diabetes. The aim of this study was to explore the possible predictive factors for exenatide efficacy among baseline characteristics of type 2 diabetic patients. We observed basic anthropometric measurements, laboratory findings and diabetic complications in ninety-one type 2 diabetic patients starting exenatide therapy. There were forty-six (50.5%) male and forty-five (49.5%) female patients, median age 58 (31-76) years, body mass index 38.95 +/- 4.35 kg/m2, duration of diabetes 10 (1-30) years and HbAlc level 8.3 +/- 1.4%. Thirty (33%) patients stopped therapy because of glycemic dysregulation during 105 (21-390) days on therapy. These patients differed statistically significantly from those that continued therapy according to the following seven variables: higher fasting glucose blood concentration (11.5 mmol/L (5.6-20) vs. 10.2 mmol/L (5-19), higher serum creatinine concentration (93 micromol/L (44-149) vs. 72 micromol/L (44-124), more frequent diabetic complications including retinopathy (56.7% vs. 27.9%), chronic kidney disease (43.7% vs. 24.7%), coronary artery disease (53.3% vs. 31.1%) and peripheral artery disease (60% vs. 34.4%), and less often concomitant metformin and exenatide therapy (62% vs. 82%). Bivariate logistic regression identified peripheral artery disease, coronary artery disease, retinopathy, and chronic kidney disease as risk factors for glycemic dysregulation on exenatide therapy. We found reasonable to consider that a higher rate of microvascular and macrovascular complications may indicate failure of exenatide therapy in the majority of patients.

    Topics: Adult; Aged; Cohort Studies; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Male; Middle Aged; Peptides; Risk Factors; Treatment Failure; Venoms

2013
Exenatide once weekly improved glycaemic control, cardiometabolic risk factors and a composite index of an HbA1c < 7%, without weight gain or hypoglycaemia, over 52 weeks.
    Diabetes, obesity & metabolism, 2013, Volume: 15, Issue:3

    Type 2 diabetes mellitus (T2DM) is often associated with cardiovascular (CV) risk factors such as obesity, hypertension and dyslipidemia. The objective of this analysis was to evaluate potential effects of exenatide once weekly (ExQW), a GLP-1 receptor agonist, on glycaemic control and CV risk factors.. This analysis included 675 Intent-to-Treat patients with T2DM [baseline (mean ± SD) HbA1c, 8.1 ± 1.2%; fasting blood glucose (FBG), 166 ± 48 mg/dl; weight, 94.3 ± 19.4 kg; systolic/diastolic blood pressure (SBP/DBP), 129 ± 15/78 ± 9 mm Hg; total cholesterol, 178.5 ± 41.9 mg/dl; low-density lipoprotein (LDL), 100.1 ± 35.0 mg/dl; high-density lipoprotein (HDL), 44.5 ± 11.6 mg/dl; triglycerides, 155.6 ± 3.3 mg/dl; alanine aminotransferase (ALT), 32.1 ± 19.5 U/l] treated with diet and exercise alone or in combination with metformin, sulfonylurea, and/or thiazolidinedione who received 52 weeks of ExQW in four clinical trials.. At 52 weeks, ExQW significantly improved HbA1c [mean (SE) change from baseline, -1.3 (0.05)%], FBG [-36.3 (2.02) mg/dl], body weight [-2.6 (0.19) kg], SBP/DBP [-3.6 (0.56) mm Hg/-1.2 (0.34) mm Hg], total cholesterol, -4.4 (1.33) mg/dl; LDL, -2.6 (1.08) mg/dl; HDL, 1.1 (0.31) mg/dl; triglycerides, -7 (1.6)%], and ALT [-4.3 (0.71) IU/l] concentrations, with greater improvements in patients with elevated analyte levels at baseline. Improvements were observed across a range of background antihyperglycaemia therapies. Of patients completing 52 weeks, 19% achieved the composite American Diabetes Association goal (HbA1c < 7.0%, BP < 130/80 mm Hg, LDL < 100 mg/dl), compared to 1% at baseline. Nearly half (48%) achieved HbA1c < 7.0% without weight gain or major/minor hypoglycaemia. Nausea was the most frequent adverse event and was predominantly mild. Hypoglycaemia was infrequent, and more common with a sulfonylurea.. With 52 weeks of ExQW, patients experienced sustained improvements in glycaemic control and CV risk factors, with an increased likelihood of achieving both a clinically relevant composite outcome (HbA1c < 7% without weight gain or increased risk of hypoglycaemia) and a composite of key therapeutic goals (HbA1c < 7%, BP < 130/80 mm Hg, LDL < 100 mg/dl).

    Topics: Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Drug Administration Schedule; Exenatide; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Male; Medication Adherence; Metformin; Middle Aged; Peptides; Risk Factors; Sulfonylurea Compounds; Time Factors; Venoms; Weight Gain

2013
Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism.
    Diabetes, 2013, Volume: 62, Issue:5

    Impaired cardiac microvascular function contributes to cardiovascular complications in diabetes. Glucagon-like peptide-1 (GLP-1) exhibits potential cardioprotective properties in addition to its glucose-lowering effect. This study was designed to evaluate the impact of GLP-1 on cardiac microvascular injury in diabetes and the underlying mechanism involved. Experimental diabetes was induced using streptozotocin in rats. Cohorts of diabetic rats received a 12-week treatment of vildagliptin (dipeptidyl peptidase-4 inhibitor) or exenatide (GLP-1 analog). Experimental diabetes attenuated cardiac function, glucose uptake, and microvascular barrier function, which were significantly improved by vildagliptin or exenatide treatment. Cardiac microvascular endothelial cells (CMECs) were isolated and cultured in normal or high glucose medium with or without GLP-1. GLP-1 decreased high-glucose-induced reactive oxygen species production and apoptotic index, as well as the levels of NADPH oxidase such as p47(phox) and gp91(phox). Furthermore, cAMP/PKA (cAMP-dependent protein kinase activity) was increased and Rho-expression was decreased in high-glucose-induced CMECs after GLP-1 treatment. In conclusion, GLP-1 could protect the cardiac microvessels against oxidative stress, apoptosis, and the resultant microvascular barrier dysfunction in diabetes, which may contribute to the improvement of cardiac function and cardiac glucose metabolism in diabetes. The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-mediated pathway.

    Topics: AMP-Activated Protein Kinases; Animals; Cardiotonic Agents; Cells, Cultured; Cyclic AMP; Diabetic Angiopathies; Diabetic Cardiomyopathies; Disease Models, Animal; Endothelium, Vascular; Exenatide; Glucagon-Like Peptide 1; Heart Ventricles; Hyperglycemia; Hypoglycemic Agents; Male; Microvessels; Oxidative Stress; Peptides; Random Allocation; Rats; Rats, Sprague-Dawley; rho GTP-Binding Proteins; Second Messenger Systems; Venoms

2013
The role of combination therapy in type 2 diabetes in the post-ACCORD era.
    Current diabetes reports, 2012, Volume: 12, Issue:3

    Topics: Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Nephropathies; Diabetic Neuropathies; Diabetic Retinopathy; Drug Therapy, Combination; Evidence-Based Medicine; Exenatide; Female; Humans; Hypertension; Hypoglycemic Agents; Male; Metformin; Peptides; Venoms

2012
Health and economic outcomes for exenatide once weekly, insulin, and pioglitazone therapies in the treatment of type 2 diabetes: a simulation analysis.
    Vascular health and risk management, 2012, Volume: 8

    Patients with type 2 diabetes (T2DM) are at risk of long-term vascular complications. In trials, exenatide once weekly (ExQW), a GLP-1R agonist, improved glycemia, weight, blood pressure (BP), and lipids in patients with T2DM. We simulated potential effects of ExQW on vascular complications, survival, and medical costs over 20 years versus standard therapies.. The Archimedes model was used to assess outcomes for ~25,000 virtual patients with T2DM (NHANES 1999-2006 [metformin ± sulfonylureas, age 57 years, body mass index 33 kg/m(2), weight 94 kg, duration T2DM 9 years, hemoglobin A1c [A1C] 8.1%]). The effects of three treatment strategies were modeled and compared to moderate-adherence insulin therapy: advancement to high-adherence insulin at A1C ≥ 8% (treat to target A1C < 7%) and addition of pioglitazone (PIO) or ExQW from simulation start. ExQW effects on A1C, weight, BP, and lipids were modeled from clinical trial data. Costs, inflated to represent 2010 $US, were derived from Medicare data, Drugstore.com, and publications. As ExQW was investigational, we omitted ExQW, PIO, and insulin pharmacy costs.. By year 1, ExQW treatment decreased A1C (~1.5%), weight (~2 kg), and systolic BP (~5 mmHg). PIO and high-adherence insulin decreased A1C by ~1%, increased weight, and did not affect systolic BP. After 20 years, A1C was ~7% with all strategies. ExQW decreased rates of cardiovascular and microvascular complications more than PIO or high-adherence insulin versus moderate-adherence insulin. Over 20 years, ExQW treatment resulted in increased quality-adjusted life-years (QALYs) of ~0.3 years/person and cost savings of $469/life-year versus moderate adherence insulin. For PIO or high-adherence insulin, QALYs were virtually unchanged, and costs/life-year versus moderate-adherence insulin increased by $69 and $87, respectively.. This long-term simulation demonstrated that ExQW treatment may decrease rates of cardiovascular and some microvascular complications of T2DM. Increased QALYs, and decreased costs were also projected.

    Topics: Aged; Biomarkers; Blood Glucose; Computer Simulation; Cost-Benefit Analysis; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Drug Administration Schedule; Drug Costs; Exenatide; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Male; Medication Adherence; Middle Aged; Models, Economic; Nutrition Surveys; Outcome and Process Assessment, Health Care; Peptides; Pioglitazone; Quality-Adjusted Life Years; Risk Assessment; Risk Factors; Thiazolidinediones; Time Factors; Treatment Outcome; United States; Venoms

2012
Non-insulin injectable treatments (glucagon-like peptide-1 and its analogs) and cardiovascular disease.
    Diabetes technology & therapeutics, 2012, Volume: 14 Suppl 1

    Glucagon-like peptide-1 (GLP-1) [GLP-1 (7-36)-amide] plays a fundamental role in regulating postprandial nutrient metabolism. GLP-1 acts through a G-protein-coupled receptor present on the membranes of many tissues, including myocardium and endothelium. GLP-1 is cleaved by the dipeptidyl peptidase-4 enzyme to its metabolite GLP-1 (9-36)-amide within 1-2 min of its release into the circulation. Investigations have been done in humans and in animal models to determine whether GLP-1 has effects on the myocardium. Infusions of GLP-1 increase cardiac function in ischemic and non-ischemic cardiovascular disease. In humans and animal models, constant infusions of GLP-1 decrease the size of infarction and improve myocardial function in ischemic/reperfusion injury. In cardiomyopathy and heart failure, infusions of GLP-1 improve myocardial function. These beneficial effects of GLP-1 on cardiac function are mediated by both GLP-1 receptor activation and GLP-1 receptor independent actions. Infusions of the metabolite GLP-1 (9-36)-amide improve cardiac function in experimental animals with cardiovascular disease even though the metabolite does not bind to the GLP-1 receptor. The beneficial effects of GLP-1 on the heart occur in the presence of a GLP-1 receptor antagonist and in animals devoid of GLP-1 receptors. Preliminary data in animals with available GLP-1 receptor agonists and cardiac disease suggest that exenatide has beneficial effects in porcine models of ischemic heart disease. The animal data with liraglutide are inconclusive. Clinical trials with exenatide and liraglutide show significant improvements in weight, systolic blood pressure, lipid profiles, and other cardiovascular risk factors. Whether these will decrease cardiovascular events is currently under investigation.

    Topics: Animals; Blood Pressure; Body Weight; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl Peptidase 4; Dogs; Exenatide; Female; Glucagon-Like Peptide 1; Humans; Lipids; Liraglutide; Male; Mice; Peptides; Rats; Venoms

2012
Improved glycemic control and reduction of cardiometabolic risk factors in subjects with type 2 diabetes and metabolic syndrome treated with exenatide in a clinical practice setting.
    Diabetes technology & therapeutics, 2009, Volume: 11, Issue:6

    Type 2 diabetes mellitus (T2DM) with the presence of metabolic syndrome (MetS) carries increased risk for cardiovascular disease. Adjunctive exenatide treatment in patients with T2DM is associated with improvements in glycemic control coupled with progressive weight reduction. We evaluated exenatide use on glycosylated hemoglobin A1c (HbA(1c)) and cardiometabolic risk factors in patients with T2DM and MetS in a single clinical practice setting.. A retrospective analysis of clinical data extracted from the records of 176 adult patients with T2DM and MetS (106 women, 70 men) who received exenatide along with existing therapeutic regimes from 2005 to 2007 was performed. HbA(1c), lipid profiles, blood pressure, and anthropometric measures were evaluated at baseline and after 16 (+/-4) weeks of exenatide therapy.. Mean HbA(1c) was significantly reduced from baseline in 16 weeks (P < 0.001), with 68% of patients achieving HbA(1c) <7%. Total, high-density lipoprotein-, and low-density lipoprotein-cholesterol levels decreased significantly. This decline was not attributable to changes in lipid-lowering agents. Significant reductions were also noted in body mass index, mean body weight, and abdominal girth (AG) with the addition of exenatide. Additional analyses showed 76% of subjects lost weight. Lessening of AG was much more pronounced in female compared with male subjects with diabetes (P < 0.032). No consistent changes in blood pressure were observed.. We found that addition of exenatide to an existing treatment regimen in patients with T2DM and MetS resulted in significant reductions in HbA(1c) along with decline in lipids, AG, and body weight. This indicates improvement in these patients' metabolic profiles.

    Topics: Adult; Antihypertensive Agents; Blood Glucose; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diuretics; Exenatide; Female; Humans; Hypoglycemic Agents; Hypolipidemic Agents; Insulin; Male; Metabolic Syndrome; Peptides; Retrospective Studies; Sulfonylurea Compounds; Venoms

2009
Six-month outcomes on A1C and cardiovascular risk factors in patients with type 2 diabetes treated with exenatide in an ambulatory care setting.
    Diabetes, obesity & metabolism, 2009, Volume: 11, Issue:12

    This study evaluated changes in clinical effectiveness measures of patients with type 2 diabetes initiating exenatide therapy in a real-world setting.. Eligible patients identified in the General Electric (GE) electronic medical record (EMR) research database from 1 January 2000 through 31 December 2007 were > or =18 years old with type 2 diabetes. Patients had prescription orders in the previous 395 days for metformin, a sulfonylurea, or a thiazolidinedione as monotherapy or in combination, and had at least 6 months of follow-up activity. Baseline clinical measures were documented from 45 days prior up to 15 days after exenatide initiation and follow-up measures documented at 6 months +/- 45 days.. A total of 1709 patients were identified for study inclusion. The overall mean A1C reduction (s.e.m.) at 6 months was -0.8% (0.05) (p<0.001), weight loss was -3.2 kg (0.14) (p<0.001), blood pressure (BP) lowering was -1.9 mmHg (0.46) systolic blood pressure (SBP) (p<0.001) and -0.5 mmHg (0.27) diastolic blood pressure (DBP) (p = 0.078). Changes in low-density lipoprotein (LDL), triglycerides and HDL were -7.4 mg/dl (1.7) (p<0.001), -23.2 mg/dl (6.7) (p = 0.001) and -0.8 mg/dl (0.33) (p = 0.012) respectively. In a quartile analysis by weight loss, mean A1C reduction ranged from -1.1 to -0.65% in the highest to lowest weight loss quartiles respectively.. In a real-world setting, exenatide initiation is associated with significant improvements in the measures of clinical effectiveness for type 2 diabetes. These reductions were comparable to those reported in randomized, controlled registration trials after 6 months of therapy.

    Topics: Adult; Aged; Ambulatory Care; Body Weight; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Exenatide; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Lipids; Male; Middle Aged; Peptides; Retrospective Studies; Risk Factors; Treatment Outcome; Venoms

2009
New medications help those with diabetes avoid heart trouble. Drugs mimic the body's natural insulin and glucose controls, but diet and exercise are still keys to controlling the disease.
    Heart advisor, 2007, Volume: 10, Issue:7

    Topics: Diabetes Mellitus; Diabetic Angiopathies; Exenatide; Heart Diseases; Humans; Hypoglycemic Agents; Metformin; Peptides; Pyrazines; Sitagliptin Phosphate; Triazoles; Venoms

2007