exenatide and Cardiomegaly

exenatide has been researched along with Cardiomegaly* in 2 studies

Other Studies

2 other study(ies) available for exenatide and Cardiomegaly

ArticleYear
Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts.
    American journal of physiology. Cell physiology, 2016, Feb-15, Volume: 310, Issue:4

    We have demonstrated that glucagon like peptide-1 (GLP-1) protects the heart against ischemic injury. However, the physiological mechanism by which GLP-1 receptor (GLP-1R) initiates cardioprotection remains to be determined. The objective of this study is to elucidate the functional roles of MAPK kinase 3 (MKK3) and Akt-1 in mediating exendin-4-elicited protection in the infarcted hearts. Adult mouse myocardial infarction (MI) was created by ligation of the left descending artery. Wild-type, MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice were divided into one of several groups: 1) sham: animals underwent thoracotomy without ligation; 2) MI: animals underwent MI and received a daily dose of intraperitoneal injection of vehicle (saline); 3) MI + exendin-4: infarcted mice received daily injections of exendin-4, a GLP-1R agonist (0.1 mg/kg, ip). Echocardiographic measurements indicate that exendin-4 treatment resulted in the preservation of ventricular function and increases in the survival rate, but these effects were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. Exendin-4 treatments suppressed cardiac hypotrophy and reduced scar size and cardiac interstitial fibrosis, respectively, but these beneficial effects were lost in genetic elimination of MKK3, Akt-1, or Akt-1(-/-);MKK3(-/-) mice. GLP-1R stimulation stimulated angiogenic responses, which were also mitigated by deletion of MKK3 and Akt-1. Exendin-4 treatment increased phosphorylation of MKK3, p38, and Akt-1 at Ser129 but decreased levels of active caspase-3 and cleaved poly (ADP-ribose) polymerase; these proteins were diminished in MKK3(-/-), Akt-1(-/-), and Akt-1(-/-);MKK3(-/-) mice. These results reveal that exendin-4 treatment improves cardiac function, attenuates cardiac remodeling, and promotes angiogenesis in the infarcted myocardium through MKK3 and Akt-1 pathway.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Cardiomegaly; Cardiotonic Agents; Disease Models, Animal; Enzyme Activation; Exenatide; Fibrosis; MAP Kinase Kinase 3; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Neovascularization, Physiologic; Peptides; Phosphorylation; Proto-Oncogene Proteins c-akt; Signal Transduction; Stroke Volume; Time Factors; Venoms; Ventricular Function, Left; Ventricular Remodeling

2016
Aliskiren, exendin-4, and insulin: their impact on endothelin receptor subtype(s) regulation/binding in type 1 diabetic rat hearts.
    Canadian journal of physiology and pharmacology, 2013, Volume: 91, Issue:10

    This study focuses on the impact of aliskiren and (or) glucagon-like peptide-1 analogue on the binding affinity/regulation of endothelin-1 (ET-1) to its receptor subtypes A (ETAR) and B (ETBR) at the level of the coronary endothelium and the cardiomyocytes in a type-1 diabetic rat model. Seven groups were used: (i) normal rats, (ii) rats with induced diabetes, (iii) rats with induced diabetes that were treated with insulin, (iv) rats with induced diabetes that were treated with exendin-4, (v) rats with induced diabetes that were treated with aliskiren, (vi) rats with induced diabetes that were co-treated with insulin plus aliskiren, and (vii) rats with induced diabetes that were co-treated with exendin-4 plus aliskiren. Heart perfusion with [(125)I]-ET-1 was employed to estimate ET-1 binding affinity (τ = 1/K-n) to ETAR and ETBR at the level of the coronary endothelium and the cardiomyocytes. Plasma ET-1 levels were measured using enzyme immunoassay, whereas densities of ETAR and ETBR were detected using Western blot. No significance differences were detected in the τ of ETAR and ETBR between normal and diabetic in cardiomyocytes and the coronary endothelium. Exendin-4 normalized the τ value for ETAR and ETBR on coronary endothelium, while aliskiren normalized it on cardiomyocytes. Furthermore, ETAR and ETBR densities were normalized with monotreatments of aliskiren and exendin-4, compared with up-regulated ETAR and down-regulated ETBR band densities in the diabetic animals. Our data indicate that aliskiren alleviates diabetes-associated hypertrophy in type 1 diabetes mellitus.

    Topics: Amides; Animals; Cardiomegaly; Coronary Vessels; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Endothelin-1; Endothelium, Vascular; Exenatide; Fumarates; Hypoglycemic Agents; Insulin; Male; Myocytes, Cardiac; Peptides; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Receptor, Endothelin B; Streptozocin; Time Factors; Venoms

2013