exenatide and Cadaver

exenatide has been researched along with Cadaver* in 2 studies

Other Studies

2 other study(ies) available for exenatide and Cadaver

ArticleYear
Birth and death of human β-cells in pancreases from cadaver donors, autopsies, surgical specimens, and islets transplanted into mice.
    Cell transplantation, 2014, Volume: 23, Issue:2

    There is great interest in the potential of the human endocrine pancreas for regeneration by β-cell replication or neogenesis. Our aim was to explore this potential in adult human pancreases and in both islet and exocrine tissue transplanted into mice. The design was to examine pancreases obtained from cadaver donors, autopsies, and fresh surgical specimens and compare these findings with those obtained from islet and duct tissue grafted into the kidney. Islets and exocrine tissue were transplanted into normoglycemic ICR-SCID mice and studied 4 and 14 weeks later. β-Cell replication, as assessed by double staining for insulin and Ki67, was 0.22 ± 0.03% at 4 weeks and 0.13 ± 0.03% at 14 weeks. In contrast, no evidence of β-cell replication could be found in 11 cadaver donor and 10 autopsy pancreases. However, Ki67 staining of β-cells in frozen sections obtained at surgery was comparable to that found in transplanted islets. Evidence for neogenesis in transplanted pancreatic exocrine tissue was supported by finding β-cells within the duct epithelium and the presence of cells double stained for insulin and cytokeratin 19 (CK19). However, β-cells within the ducts never constituted more than 1% of the CK19-positive cells. With confocal microscopy, 7 of 12 examined cells expressed both markers, consistent with a neogeneic process. Mice with grafts containing islet or exocrine tissue were treated with various combinations of exendin-4, gastrin, and epidermal growth factor; none increased β-cell replication or stimulated neogenesis. In summary, human β-cells replicate at a low level in islets transplanted into mice and in surgical pancreatic frozen sections, but rarely in cadaver donor or autopsy pancreases. The absence of β-cell replication in many adult cadaver or autopsy pancreases could, in part, be an artifact of the postmortem state. Thus, it appears that adult human β-cells maintain a low level of turnover through replication and neogenesis.

    Topics: Animals; Autopsy; Cadaver; Epidermal Growth Factor; Exenatide; Gastrins; Humans; Insulin-Secreting Cells; Islets of Langerhans Transplantation; Mice; Peptides; Venoms

2014
Dominant negative mutant forms of the cAMP response element binding protein induce apoptosis and decrease the anti-apoptotic action of growth factors in human islets.
    Diabetologia, 2007, Volume: 50, Issue:8

    Transplantation of islets is a viable option for the treatment of diabetes. A significant proportion of islets is lost during isolation, storage and after transplantation as a result of apoptosis. cAMP response element binding protein (CREB) is an important cell survival factor. The aim of the present study was to determine whether preservation of CREB function is needed for survival of human islets.. To determine the effects of downregulation of CREB activity on beta cell apoptosis in a transplantation setting, adenoviral vectors were used to express two dominant negative mutant forms of CREB in human islets isolated from cadaveric donors. Markers of apoptosis were determined in these transduced islets under basal conditions and following treatment with growth factor.. Expression of CREB mutants in human islets resulted in significant (p < 0.001) activation of caspase-9, a key regulatory enzyme in the mitochondrial pathway of apoptosis, when compared with islets transduced with adenoviral beta galactosidase. Immunocytochemical analysis showed the activation of caspase-9 to be predominantly in beta cells. Other definitive markers of apoptosis such as parallel activation of caspase-3, accumulation of cleaved poly-(ADP-ribose) polymerase and nuclear condensation were also observed. Furthermore, the anti-apoptotic action of growth factors exendin-4 and betacellulin in human islets exposed to cytokines was partially lost when CREB function was impaired.. Our findings suggest that impairment of CREB-mediated transcription could lead to loss of islets by apoptosis with potential implications in islet transplantation as well as in the mechanism of beta cell loss leading to diabetes.

    Topics: Adenoviridae; Apoptosis; Betacellulin; Cadaver; Caspase 9; Caspases; Cyclic AMP Response Element-Binding Protein; Cytokines; Exenatide; Genes, Dominant; Green Fluorescent Proteins; Humans; Immunoblotting; Immunohistochemistry; In Situ Nick-End Labeling; Intercellular Signaling Peptides and Proteins; Islets of Langerhans; Mutation; Peptides; Transfection; Venoms

2007