exenatide has been researched along with Brain-Infarction* in 4 studies
4 other study(ies) available for exenatide and Brain-Infarction
Article | Year |
---|---|
The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia.
As the number of patients with cardioembolic ischemic stroke is predicted to be double by 2030, increased burden of warfarin-associated hemorrhagic transformation (HT) after cerebral ischemia is an expected consequence. However, thus far, no effective treatment strategy is available for HT prevention in routine clinical practice. While the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is known to protect against oxidative stress and neuronal cell death caused by ischemic brain damage, its effect on preventing warfarin-associated HT after cerebral ischemia is yet unknown. Therefore, we hypothesized that Ex-4 would stabilize the blood-brain barrier (BBB) and suppress neuroinflammation through PI3K-Akt-induced inhibition of glycogen synthase kinase-3β (GSK-3β) after warfarin-associated HT post-cerebral ischemia.. We used male C57BL/6 mice for all experiments. A 5-mg warfarin sodium tablet was dissolved in animals' drinking water (effective warfarin uptake 0.04 mg (2 mg/kg) per mouse). The mice were fed for 0, 6, 12, and 24 h with ad libitum access to the treated water. To study the effects of Ex-4, temporary middle cerebral artery occlusion (MCAO) was performed. Then, either Ex-4 (10 mg/kg) or saline was injected through the tail vein, and in the Ex-4 + wortmannin group, PI3K inhibitor wortmannin was intravenously injected, after reperfusion. The infarct volume, neurological deficits, and integrity of the BBB were assessed 72 h post MCAO. One- or two-way ANOVA was used to test the difference between means followed by Newman-Keuls post hoc testing for pair-wise comparison.. We observed that Ex-4 ameliorated warfarin-associated HT and preserved the integrity of the BBB after cerebral ischemia through the PI3K/Akt/GSK-3β pathway. Furthermore, Ex-4 suppressed oxidative DNA damage and lipid peroxidation, attenuated pro-inflammatory cytokine expression levels, and suppressed microglial activation and neutrophil infiltration in warfarin-associated HT post-cerebral ischemia. However, these effects were totally abolished in the mice treated with Ex-4 + the PI3K inhibitor-wortmannin. The PI3K/Akt-GSK-3β signaling pathway appeared to contribute to the protection afforded by Ex-4 in the warfarin-associated HT model.. GLP-1 administration could reduce warfarin-associated HT in mice. This beneficial effect of GLP-1 is associated with attenuating neuroinflammation and BBB disruption by inactivating GSK-3β through the PI3K/Akt pathway. Topics: Animals; Anticoagulants; Blood-Brain Barrier; Brain; Brain Infarction; Brain Ischemia; Cytokines; Disease Models, Animal; Exenatide; Gene Expression Regulation; Glucagon-Like Peptide-1 Receptor; Hemorrhage; Hypoglycemic Agents; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Microglia; Nervous System Diseases; Peptides; Signal Transduction; Venoms; Warfarin | 2016 |
Repeated administration of exendin-4 reduces focal cerebral ischemia-induced infarction in rats.
Exendin-4 is a GLP-1 agonist that is clinically used for the treatment of diabetes mellitus and may also have neuroprotective effect. We explored the effect of repeated administration of exendin-4 (0.5 μg/kg, intraperitoneal twice a day for 7 days) on infarct volume, neurological deficit (neurological score, grip test, foot fault and rota rod tests), oxidative stress parameters (malondialdehyde, reduced glutathione, and superoxide dismutase) and expression of endothelin (ET) ET(A) and ET(B) receptors following cerebral ischemia produced in rats by permanent middle cerebral artery occlusion (MCAO). Since ET(A) receptors in the central nervous system (CNS) are involved in cerebral ischemia, we determined the effect of a specific ET(A) receptor antagonist, BQ123 (1mg/kg, intravenously administered thrice: 30 min, 2h and 4h after MCAO for a total dose of 3 mg/kg) on cerebral ischemia in control and exendin-4 treated rats. Results indicate that exendin-4 treated rats had significant protection following MCAO induced cerebral ischemia. The infarct volume was 27% less compared to vehicle treated rats. The neurological deficit following MCAO was lower and oxidative stress parameters were improved in exendin-4 treated rats compared to control. BQ123 significantly improved infarct volume, oxidative stress parameters and neurological deficit in ischemic rats treated with vehicle or exendin-4. BQ123 induced protection from cerebral ischemia was similar in vehicle or exendin-4 treated rats. Expression of ET(A) receptors was significantly increased following cerebral ischemia which was not affected by exendin-4 treatment or by BQ123 administration. No change in expression of ET(B) receptors was observed following cerebral ischemia or any treatment. It is concluded that exendin-4 protects the CNS from damage due to cerebral ischemia by reducing oxidative stress and is independent of ET receptor involvement. Topics: Animals; Brain Infarction; Brain Ischemia; Disease Models, Animal; Down-Regulation; Drug Administration Schedule; Exenatide; Male; Neuroprotective Agents; Peptides; Rats; Rats, Sprague-Dawley; Venoms | 2012 |
Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia.
Glucagon-like peptide-1 receptor (GLP-1R) protects against neuronal damages in the brain. In the present study, ischemia-induced changes in GLP-1R immunoreactivity in the gerbil hippocampal CA1 region were evaluated after transient cerebral ischemia; in addition, the neuroprotective effect of the GLP-1R agonist exendin-4 (EX-4) against ischemic damage was studied. GLP-1R immunoreactivity and its protein levels in the ischemic CA1 region were highest at 1 day after ischemia/reperfusion (I/R). At 4 days after I/R, GLP-1R immunoreactivity was hardly detected in CA1 pyramidal neurons, and its protein level was lowest. GLP-1R protein level was increased again at 10 days after I/R, and GLP-1R immunoreactivity was found in astrocytes and GABAergic interneurons. In addition, EX-4 treatment attenuated ischemia-induced hyperactivity, neuronal damage, and microglial activation in the ischemic CA1 region in a dose-dependent manner. EX-4 treatment also induced the elevation of GLP-1R immunoreactivity and protein levels in the ischemic CA1 region. These results indicate that GLP-1R is altered in the ischemic region after an ischemic insult and that EX-4 protects against ischemia-induced neuronal death possibly by increasing GLP-1R expression and attenuating microglial activation against transient cerebral ischemic damage. Topics: Animals; Brain Infarction; Brain Ischemia; Disease Models, Animal; Exenatide; Gerbillinae; Glucagon-Like Peptide-1 Receptor; Hypoglycemic Agents; Male; Neuroprotective Agents; Peptides; Receptors, Glucagon; Reperfusion Injury; Venoms | 2011 |
GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism.
Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic peptide secreted from the gastrointestinal tract in response to food intake. It enhances pancreatic islet beta-cell proliferation and glucose-dependent insulin secretion, and lowers blood glucose and food intake in patients with type 2 diabetes mellitus (T2DM). A long-acting GLP-1 receptor (GLP-1R) agonist, exendin-4 (Ex-4), is the first of this new class of antihyperglycemia drugs approved to treat T2DM. GLP-1Rs are coupled to the cAMP second messenger pathway and, along with pancreatic cells, are expressed within the nervous system of rodents and humans, where receptor activation elicits neurotrophic actions. We detected GLP-1R mRNA expression in both cultured embryonic primary cerebral cortical and ventral mesencephalic (dopaminergic) neurons. These cells are vulnerable to hypoxia- and 6-hydroxydopamine-induced cell death, respectively. We found that GLP-1 and Ex-4 conferred protection in these cells, but not in cells from Glp1r knockout (-/-) mice. Administration of Ex-4 reduced brain damage and improved functional outcome in a transient middle cerebral artery occlusion stroke model. Ex-4 treatment also protected dopaminergic neurons against degeneration, preserved dopamine levels, and improved motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). Our findings demonstrate that Ex-4 can protect neurons against metabolic and oxidative insults, and they provide preclinical support for the therapeutic potential for Ex-4 in the treatment of stroke and PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Brain Infarction; Cell Death; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Cytoprotection; Disease Models, Animal; Dopamine; Embryo, Mammalian; Exenatide; Gene Expression Regulation; Glucagon-Like Peptide-1 Receptor; Humans; Mesencephalon; Mice; Neurons; Parkinson Disease; Peptides; Rats; Receptors, Glucagon; Stroke; Treatment Outcome; Venoms | 2009 |