exenatide has been researched along with Alcoholism* in 4 studies
2 trial(s) available for exenatide and Alcoholism
Article | Year |
---|---|
Exenatide once weekly for alcohol use disorder investigated in a randomized, placebo-controlled clinical trial.
BackgroundAlcohol use disorder (AUD) is a chronic, relapsing brain disorder that accounts for 5% of deaths annually, and there is an urgent need to develop new targets for therapeutic intervention. The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduces alcohol consumption in rodents and nonhuman primates, but its efficacy in patients with AUD is unknown.MethodsIn a randomized, double-blinded, placebo-controlled clinical trial, treatment-seeking AUD patients were assigned to receive exenatide (2 mg subcutaneously) or placebo once weekly for 26 weeks, in addition to standard cognitive-behavioral therapy. The primary outcome was reduction in number of heavy drinking days. A subgroup also completed functional MRI (fMRI) and single-photon emission CT (SPECT) brain scans.ResultsA total of 127 patients were enrolled. Our data revealed that although exenatide did not significantly reduce the number of heavy drinking days compared with placebo, it significantly attenuated fMRI alcohol cue reactivity in the ventral striatum and septal area, which are crucial brain areas for drug reward and addiction. In addition, dopamine transporter availability was lower in the exenatide group compared with the placebo group. Exploratory analyses revealed that exenatide significantly reduced heavy drinking days and total alcohol intake in a subgroup of obese patients (BMI > 30 kg/m2). Adverse events were mainly gastrointestinal.ConclusionThis randomized controlled trial on the effects of a GLP-1 receptor agonist in AUD patients provides new important knowledge on the effects of GLP-1 receptor agonists as a novel treatment target in addiction.Trial registrationEudraCT: 2016-003343-11. ClinicalTrials.gov (NCT03232112).FundingNovavi Foundation; Research Foundation, Mental Health Services, Capital Region of Denmark; Research Foundation, Capital Region of Denmark; Ivan Nielsen Foundation; A.P. Moeller Foundation; Augustinus Foundation; Woerzner Foundation; Grosserer L.F. Foghts Foundation; Hartmann Foundation; Aase and Ejnar Danielsen Foundation; P.A. Messerschmidt and Wife Foundation; and Lundbeck Foundation. Topics: Alcohol Drinking; Alcoholism; Animals; Dopamine Plasma Membrane Transport Proteins; Double-Blind Method; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Peptides; Venoms | 2022 |
Does glucagon-like peptide-1 (GLP-1) receptor agonist stimulation reduce alcohol intake in patients with alcohol dependence: study protocol of a randomised, double-blinded, placebo-controlled clinical trial.
Alcohol dependence is a major public health problem. It is underdiagnosed and undertreated. Even when treated, more than 2/3 of patients in abstinence-oriented treatment will relapse within the first year. Thus, there is an urgent need for efficacious medical treatment of alcohol dependence. Glucagon-like peptide-1 (GLP-1) receptor stimulation has proven to reduce alcohol consumption in preclinical experiments. However, the effect of GLP-1 receptor agonists in humans has to our knowledge, not yet been investigated. METHODS AND ANALYSIS:. Ethical approval has been obtained. Before screening, all patients will be provided oral and written information about the trial. The study results will be disseminated by peer-review publications and conference presentations and has the potential to reveal a completely new medical treatment of alcohol dependence. Topics: Alcohol Drinking; Alcoholism; Double-Blind Method; Exenatide; Female; Glucagon-Like Peptide-1 Receptor; Humans; Injections; Male; Randomized Controlled Trials as Topic | 2018 |
2 other study(ies) available for exenatide and Alcoholism
Article | Year |
---|---|
Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats.
Glucagon-like peptide1 receptor (GLP-1R) agonists have been found to reduce alcohol drinking in rodents and overweight patients with alcohol use disorder (AUD). However, the probability of low semaglutide doses, an agonist with higher potency and affinity for GLP-1R, to attenuate alcohol-related responses in rodents and the underlying neuronal mechanisms is unknown.. In the intermittent access model, we examined the ability of semaglutide to decrease alcohol intake and block relapse-like drinking, as well as imaging the binding of fluorescently marked semaglutide to nucleus accumbens (NAc) in both male and female rats. The suppressive effect of semaglutide on alcohol-induced locomotor stimulation and in vivo dopamine release in NAc was tested in male mice. We evaluated effect of semaglutide on the in vivo release of dopamine metabolites (DOPAC and HVA) and gene expression of enzymes metabolising dopamine (MAOA and COMT) in male mice.. In male and female rats, acute and repeated semaglutide administration reduced alcohol intake and prevented relapse-like drinking. Moreover, fluorescently labelled semaglutide was detected in NAc of alcohol-drinking male and female rats. Further, semaglutide attenuated the ability of alcohol to cause hyperlocomotion and to elevate dopamine in NAc in male mice. As further shown in male mice, semaglutide enhanced DOPAC and HVA in NAc when alcohol was onboard and increased the gene expression of COMT and MAOA.. Altogether, this indicates that semaglutide reduces alcohol drinking behaviours, possibly via a reduction in alcohol-induced reward and NAc dependent mechanisms. As semaglutide also decreased body weight of alcohol-drinking rats of both sexes, upcoming clinical studies should test the plausibility that semaglutide reduces alcohol intake and body weight in overweight AUD patients.. Swedish Research Council (2019-01676), LUA/ALF (723941) from the Sahlgrenska University Hospital and the Swedish brain foundation. Topics: 3,4-Dihydroxyphenylacetic Acid; Alcohol Drinking; Alcoholism; Animals; Dopamine; Ethanol; Exenatide; Female; Male; Mice; Overweight; Rats; Recurrence | 2023 |
Brain region specific glucagon-like peptide-1 receptors regulate alcohol-induced behaviors in rodents.
Glucagon-like peptide 1 (GLP-1), an incretin hormone that reduces food intake, was recently established as a novel regulator of alcohol-mediated behaviors. Clinically available analogues pass freely into the brain, but the mechanisms underlying GLP-1-modulated alcohol reward remains largely unclear. GLP-1 receptors (GLP-1R) are expressed throughout the nuclei of importance for acute and chronic effects of alcohol, such as the laterodorsal tegmental area (LDTg), the ventral tegmental area (VTA) and the nucleus accumbens (NAc). We therefore evaluated the effects of bilateral infusion of the GLP-1R agonist exendin-4 (Ex4) into NAc shell, anterior (aVTA), posterior (pVTA) or LDTg on the acute alcohol-induced locomotor stimulation and memory of alcohol reward in the conditioned place preference (CPP) model in mice, as well as on alcohol intake in rats consuming high amounts of alcohol for 12 weeks. Ex4 into the NAc shell blocks alcohol-induced locomotor stimulation and memory of alcohol reward as well as decreases alcohol intake. The GLP-1R expression in NAc is elevated in high compared to low alcohol-consuming rats. On the contrary, GLP-1R activation in the aVTA does not modulate alcohol-induced behaviors. Ex4 into the pVTA prevents alcohol-induced locomotor simulation, but does neither modulate CPP-dependent alcohol memory nor alcohol intake. Intra-LDTg-Ex4 attenuates alcohol-induced locomotor stimulation and reduces alcohol intake, but does not affect memory of alcohol reward. Collectively, these data provide additional knowledge of the functional role of GLP-1R in reward-related areas for alcohol-mediated behaviors and further support GLP-1R as a potential treatment target for alcohol use disorder. Topics: Alcohol Drinking; Alcoholism; Animals; Conditioning, Operant; Conditioning, Psychological; Ethanol; Exenatide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Male; Mice; Nucleus Accumbens; Peptides; Rats; Rats, Wistar; Receptors, Glucagon; Reward; Ventral Tegmental Area | 2019 |