ex-527 and Stroke

ex-527 has been researched along with Stroke* in 2 studies

Other Studies

2 other study(ies) available for ex-527 and Stroke

ArticleYear
Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice.
    Journal of pineal research, 2015, Volume: 58, Issue:1

    Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.

    Topics: Animals; Antioxidants; Brain Ischemia; Carbazoles; Cell Death; Male; Melatonin; Mice; Mitochondria; Rats; Signal Transduction; Sirtuin 1; Stroke

2015
Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.
    Brain research bulletin, 2015, Volume: 115

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Benzofurans; Brain; Brain Edema; Brain Ischemia; Carbazoles; Central Nervous System Agents; Disease Models, Animal; Infarction, Middle Cerebral Artery; Inflammation; Male; Neuroprotective Agents; Random Allocation; Rats, Sprague-Dawley; Severity of Illness Index; Sirtuin 1; Stroke; Treatment Outcome

2015
chemdatabank.com