ex-527 and Hyperoxia

ex-527 has been researched along with Hyperoxia* in 2 studies

Other Studies

2 other study(ies) available for ex-527 and Hyperoxia

ArticleYear
Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction.
    Experimental biology and medicine (Maywood, N.J.), 2021, Volume: 246, Issue:5

    Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.

    Topics: Acetylation; Alveolar Epithelial Cells; Apoptosis; Carbazoles; Cell Death; Cell Line; Cell Survival; DNA-Binding Proteins; Down-Regulation; Heterocyclic Compounds, 4 or More Rings; Humans; Hyperoxia; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Proteins; Models, Biological; Nuclear Respiratory Factor 1; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Reactive Oxygen Species; Resveratrol; Sirtuin 1; Transcription Factors; Tumor Suppressor Protein p53; Up-Regulation

2021
Hydrogen alleviates hyperoxic acute lung injury related endoplasmic reticulum stress in rats through upregulation of SIRT1.
    Free radical research, 2017, Volume: 51, Issue:6

    Hyperoxic acute lung injury (HALI) is a major clinical problem for patients undergoing supplemental oxygen therapy. Currently in clinical settings there exist no effective means of prevention or treatment methods. Our previous study found that: hydrogen could reduce HALI, as well as oxidative stress. This research will further explore the mechanism underlying the protective effect of hydrogen on oxygen toxicity. Rats were randomly assigned into three experimental groups and were exposed in a oxygen chamber for 60 continuous hours: 100% balanced air (control); 100% oxygen (HALI); 100% oxygen with hydrogen treatment (HALI + HRS). We examined lung function by wet to dry ratio of lung, lung pleural effusion and cell apoptosis. We also detected endoplasmic reticulum stress (ERS) by examining the expression of CHOP, GRP78 and XBP1. We further investigated the role of Sirtuin 1 (SIRT1) in HALI, which contributes to cellular regulation including ERS, by examining its expression after hydrogen treatment with SIRT1 inhibitor. Hydrogen could significantly reduce HALI by reducing lung edema and apoptosis, inhibiting the elevating of ERS and increased SIRT1 expression. By inhibition of SIRT1 expression, the effect of hydrogen on prevention of HALI is significantly weakened, the inhibition of the ERS was also reversed. Our findings indicate that hydrogen could reduce HALI related ERS and the mechanism of hydrogen may be associated with upregulation of SIRT1, this study reveals the molecular mechanisms underlying the protective effect of hydrogen, which provides a new theoretical basis for clinical application of hydrogen.

    Topics: Acute Lung Injury; Animals; Apoptosis; Carbazoles; Endoplasmic Reticulum Stress; Enzyme Activation; Gene Expression Regulation; Heat-Shock Proteins; Histone Deacetylase Inhibitors; Hydrogen; Hyperoxia; Male; Organ Size; Oxygen; Protective Agents; Rats; Rats, Sprague-Dawley; Signal Transduction; Sirtuin 1; Transcription Factor CHOP; X-Box Binding Protein 1

2017