ex-527 has been researched along with Diabetic-Nephropathies* in 2 studies
2 other study(ies) available for ex-527 and Diabetic-Nephropathies
Article | Year |
---|---|
Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renal fibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats.
Diabetic nephropathy (DN) is one of the major microvascular complications of diabetes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial cellular defense factor to cope with oxidative stress. Silent information regulator T1 (Sirt1) is a deacetylase with antioxidative stress activity. Fucoxanthin is a marine-derived carotenoid. This study was conducted to investigate whether fucoxanthin could alleviate oxidative stress by activating Sirt1/Nrf2 signaling to alleviate DN. In streptozotocin-induced diabetic rats, fucoxanthin treatment effectively improved renal function, alleviated glomerulosclerosis. Fucoxanthin reversed the decreased protein levels of Sirt1 and Nrf2 in the kidney of diabetic rats and glomerular mesangial cells cultured in high glucose. Conversely, EX527, a Sirt1 inhibitor, counteracted the effect of fucoxanthin on the expression of Nrf2. Furthermore, in vivo and vitro results showed that fucoxanthin treatment reversed the low expression and activity of superoxide dismutase and heme oxygenase 1, depending on Sirt1 activation. Our results suggest that fucoxanthin improves diabetic kidney function and renal fibrosis by activating Sirt1/Nrf2 signaling to reduce oxidative stress. Topics: Animals; Antioxidants; Carbazoles; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibrosis; Heme Oxygenase (Decyclizing); Humans; Male; Mesangial Cells; NF-E2-Related Factor 2; Oxidative Stress; Primary Cell Culture; Rats; Rats, Sprague-Dawley; Sirtuin 1; Streptozocin; Xanthophylls | 2021 |
Protective effect of EX-527 against high-fat diet-induced diabetic nephropathy in Zucker rats.
High-fat diet (HFD)-induced obesity is implicated in diabetic nephropathy (DN). EX-527, a selective Sirtuin 1 (SIRT1) inhibitor, has multiple biological functions; however, its protective effect against DN is yet to be properly understood. This study was aimed to explore the protective effect of EX-527 against DN in HFD-induced diabetic Zucker (ZDF) rats. After 21 weeks of continually feeding HFD to the rats, the apparent characteristics of progressive DN were observed, which included an increase in kidney weight (~160%), hyperglycemia, oxidative stress, and inflammatory cytokines, and subsequent renal cell damage. However, the administration of EX-527 for 10 weeks significantly reduced the blood glucose concentration and kidney weight (~59%). Furthermore, EX-527 significantly reduced the serum concentration of transforming growth factor-β1 (49%), interleukin (IL)-1β (52%), and IL-6 in the HFD-fed rats. Overall, the antioxidant activities significantly increased, and oxidative damage to lipids or DNA was suppressed. Particularly, EX-527 significantly reduced blood urea nitrogen (81%), serum creatinine (71%), microalbumin (43%), and urinary excretion of protein-based biomarkers. Histopathological examination revealed expansion of the extracellular mesangial matrix and suppression of glomerulosclerosis following EX-527 administration. EX-527 downregulated the expression of α-SMA (~64%), TGF-β (25%), vimentin, α-tubulin, fibronectin, and collagen-1 in the kidneys of the HFD-fed rats. Additionally, EX-527 substantially reduced claudin-1 and SIRT1 expression, but increased the expression of SIRT3 in the kidneys of the HFD-fed rats. EX-527 also inhibited the growth factor receptors, including EGFR, PDGFR-β, and STAT3, which are responsible for the anti-fibrotic effect of SIRT-1. Therefore, the administration of EX-527 protects against HFD-induced DN. Topics: Animals; Biomarkers; Blood Glucose; Carbazoles; Cytokines; Diabetic Nephropathies; Diet, High-Fat; Gene Expression Regulation; Glycation End Products, Advanced; Kidney; Male; Organ Size; Oxidative Stress; Pancreas; Rats; Rats, Zucker | 2020 |