ex-527 has been researched along with Brain-Edema* in 2 studies
2 other study(ies) available for ex-527 and Brain-Edema
Article | Year |
---|---|
Fucoxanthin Mitigates Subarachnoid Hemorrhage-Induced Oxidative Damage via Sirtuin 1-Dependent Pathway.
Oxidative stress is a key component of the pathological cascade in subarachnoid hemorrhage (SAH). Fucoxanthin (Fx) possesses a strong antioxidant property and has shown neuroprotective effects in acute brain injuries such as ischemic stroke and traumatic brain injury. Here, we investigated the beneficial effects of Fx against SAH-induced oxidative insults and the possible molecular mechanisms. Our data showed that Fx could significantly inhibit SAH-induced reactive oxygen species production and lipid peroxidation, and restore the impairment of endogenous antioxidant enzymes activities. In addition, Fx supplementation improved mitochondrial morphology, ameliorated neural apoptosis, and reduced brain edema after SAH. Moreover, Fx administration exerted an improvement in short-term and long-term neurobehavior functions after SAH. Mechanistically, Fx inhibited oxidative damage and brain injury after SAH by deacetylation of forkhead transcription factors of the O class and p53 via sirtuin 1 (Sirt1) activation. EX527, a selective Sirt1 inhibitor, significantly abated Fx-induced Sirt1 activation and abrogated the antioxidant and neuroprotective effects of Fx after SAH. In primary neurons, Fx similarly suppressed oxidative insults and improved cell viability. These effects were associated with Sirt1 activation and were reversed by EX527 treatment. Taken together, our study explored that Fx provided protection against SAH-induced oxidative insults by inducing Sirt1 signaling, indicating that Fx might serve as a potential therapeutic drug for SAH. Topics: Animals; Antioxidants; Apoptosis; Brain; Brain Edema; Carbazoles; Cell Survival; Cells, Cultured; Female; Male; Mice, Inbred C57BL; Mitochondria; Nerve Degeneration; Neurons; Oxidative Stress; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Sirtuin 1; Subarachnoid Hemorrhage; Xanthophylls | 2020 |
Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.
Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Benzofurans; Brain; Brain Edema; Brain Ischemia; Carbazoles; Central Nervous System Agents; Disease Models, Animal; Infarction, Middle Cerebral Artery; Inflammation; Male; Neuroprotective Agents; Random Allocation; Rats, Sprague-Dawley; Severity of Illness Index; Sirtuin 1; Stroke; Treatment Outcome | 2015 |