ew-7197 has been researched along with Pancreatic-Neoplasms* in 3 studies
3 other study(ies) available for ew-7197 and Pancreatic-Neoplasms
Article | Year |
---|---|
Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors.
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer. Topics: Animals; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Enzyme Inhibitors; Mice; Pancreatic Neoplasms; Transforming Growth Factor beta1 | 2023 |
Vactosertib, TGF-β receptor I inhibitor, augments the sensitization of the anti-cancer activity of gemcitabine in pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDAC) exhibits a pronounced extracellular matrix (ECM)-rich response, which is produced by an excessive amount of transforming growth factor β (TGF-β), resulting in tumor progression and metastasis. In addition, TGF-β signaling contributes to rapidly acquired resistance and incomplete response to gemcitabine. Recently, selective inhibitors of the TGF-β signaling pathway have shown promise in PDAC treatment, particularly as an option for augmenting responses to chemotherapy. Here, we investigated the synergistic anticancer effects of a small-molecule TGF-β receptor I kinase inhibitor (vactosertib/EW-7197) in the presence of gemcitabine, and its mechanism of action in pancreatic cancer. Vactosertib sensitized pancreatic cancer cells to gemcitabine by synergistically inhibiting their viability. Importantly, the combination of vactosertib and gemcitabine significantly attenuated the expression of major ECM components, including collagens, fibronectin, and α-SMA, in pancreatic cancer compared with gemcitabine alone. This resulted in potent induction of mitochondrial-mediated apoptosis, gemcitabine-mediated cytotoxicity, and inhibition of tumor ECM by vactosertib. Additionally, the combination decreased metastasis through inhibition of migration and invasion, and exhibited synergistic anti-cancer activity by inhibiting the TGF-β/Smad2 pathway in pancreatic cancer cells. Furthermore, co-treatment significantly suppressed tumor growth in orthotopic models. Therefore, our findings demonstrate that vactosertib synergistically increased the antitumor activity of gemcitabine via inhibition of ECM component production by inhibiting the TGF-β/Smad2 signaling pathway. This suggests that the combination of vactosertib and gemcitabine may be a potential treatment option for patients with pancreatic cancer. Topics: Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Deoxycytidine; Gemcitabine; Humans; Pancreatic Neoplasms; Transforming Growth Factor beta | 2023 |
Inhibition of TGF-β signalling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumour mouse models.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies. TGF-β is strongly expressed in both the epithelial and stromal compartments of PDAC, and dysregulation of TGF-β signalling is a frequent molecular disturbance in PDAC progression and metastasis. In this study, we investigated whether blockade of TGF-β signalling synergizes with nal-IRI/5-FU/LV, a chemotherapy regimen for malignant pancreatic cancer, in an orthotopic pancreatic tumour mouse model. Compared to nal-IRI/5-FU/LV treatment, combining nal-IRI/5-FU/LV with vactosertib, a TGF-β signalling inhibitor, significantly improved long-term survival rates and effectively suppressed invasion to surrounding tissues. Through RNA-sequencing analysis, we identified that the combination treatment results in robust abrogation of tumour-promoting gene signatures and positive enrichment of tumour-suppressing and apoptotic gene signatures. Particularly, the expression of tumour-suppressing gene Ccdc80 was induced by vactosertib and further induced by vactosertib in combination with nal-IRI/5-FU/LV. Ectopic expression of CCDC80 suppressed migration and colony formation concomitant with decreased expression of epithelial-to-mesenchymal transition (EMT) markers in pancreatic cancer cells. Collectively, these results indicate that combination treatment of vactosertib with nal-IRI/5-FU/LV improves overall survival rates in a mouse model of pancreatic cancer by suppressing invasion through CCDC80. Therefore, combination therapy of nal-IRI/5-FU/LV with vactosertib could provide clinical benefits to pancreatic cancer patients. Topics: Aniline Compounds; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinogenesis; Cell Line, Tumor; Cell Movement; Disease Models, Animal; Drug Synergism; Epithelial-Mesenchymal Transition; Fluorouracil; Gene Expression Regulation, Neoplastic; Irinotecan; Leucovorin; Liposomes; Mice, Inbred C57BL; Nanoparticles; Neoplasm Invasiveness; Pancreatic Neoplasms; Signal Transduction; Survival Analysis; Transcriptome; Transforming Growth Factor beta; Triazoles; Tumor Stem Cell Assay; Up-Regulation | 2020 |