ew-7197 has been researched along with Disease-Models--Animal* in 5 studies
5 other study(ies) available for ew-7197 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of TGF-β signalling in combination with nal-IRI plus 5-Fluorouracil/Leucovorin suppresses invasion and prolongs survival in pancreatic tumour mouse models.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies. TGF-β is strongly expressed in both the epithelial and stromal compartments of PDAC, and dysregulation of TGF-β signalling is a frequent molecular disturbance in PDAC progression and metastasis. In this study, we investigated whether blockade of TGF-β signalling synergizes with nal-IRI/5-FU/LV, a chemotherapy regimen for malignant pancreatic cancer, in an orthotopic pancreatic tumour mouse model. Compared to nal-IRI/5-FU/LV treatment, combining nal-IRI/5-FU/LV with vactosertib, a TGF-β signalling inhibitor, significantly improved long-term survival rates and effectively suppressed invasion to surrounding tissues. Through RNA-sequencing analysis, we identified that the combination treatment results in robust abrogation of tumour-promoting gene signatures and positive enrichment of tumour-suppressing and apoptotic gene signatures. Particularly, the expression of tumour-suppressing gene Ccdc80 was induced by vactosertib and further induced by vactosertib in combination with nal-IRI/5-FU/LV. Ectopic expression of CCDC80 suppressed migration and colony formation concomitant with decreased expression of epithelial-to-mesenchymal transition (EMT) markers in pancreatic cancer cells. Collectively, these results indicate that combination treatment of vactosertib with nal-IRI/5-FU/LV improves overall survival rates in a mouse model of pancreatic cancer by suppressing invasion through CCDC80. Therefore, combination therapy of nal-IRI/5-FU/LV with vactosertib could provide clinical benefits to pancreatic cancer patients. Topics: Aniline Compounds; Animals; Antineoplastic Combined Chemotherapy Protocols; Carcinogenesis; Cell Line, Tumor; Cell Movement; Disease Models, Animal; Drug Synergism; Epithelial-Mesenchymal Transition; Fluorouracil; Gene Expression Regulation, Neoplastic; Irinotecan; Leucovorin; Liposomes; Mice, Inbred C57BL; Nanoparticles; Neoplasm Invasiveness; Pancreatic Neoplasms; Signal Transduction; Survival Analysis; Transcriptome; Transforming Growth Factor beta; Triazoles; Tumor Stem Cell Assay; Up-Regulation | 2020 |
EW-7197, an oral transforming growth factor β type I receptor kinase inhibitor, for preventing peritoneal adhesion formation in a rat model.
EW-7197 is an oral transforming growth factor β type I receptor kinase inhibitor currently undergoing phase I clinical trials for cancer treatment in the United States. This study evaluates whether EW-7197 prevents peritoneal adhesion formation in a rat model.. Forty-eight female Wistar rats underwent peritoneal adhesion induction by the creation of peritoneal ischemic buttons and were randomly divided into 4 groups of 12 each. The control group received 0.3 mL vehicle by oral gavage once daily for 7 days after adhesion induction. The 10 mg and 20 mg groups received 10 or 20 mg/kg EW-7197 phosphate dissolved in 0.3 mL vehicle by oral gavage once daily for 7 days after adhesion induction. The rebound group received 20 mg/kg EW-7197 phosphate dissolved in 0.3 mL vehicle by oral gavage once daily for 7 days after adhesion induction followed by 0.3 mL vehicle only by gavage once daily for an additional 21 days. After the respective treatments were completed, the animals were euthanized.. All rats survived until the end of the study without complications. EW-7197 reduced the incidence, quality, and tenacity of peritoneal adhesions in a dose-dependent manner. Fibrosis and collagen production were reduced in EW-7197-treated peritoneal ischemic buttons. Transforming growth factor β/Smad2/3 signaling and mesothelial-to-mesenchymal transition were inhibited in EW-7197-treated peritoneal ischemic buttons. Discontinuation of EW-7197 was not associated with rebound effects.. EW-7197 prevented peritoneal adhesion formation potentially via inhibition of transforming growth factor β1/Smad2/3-induced mesothelial-to-mesenchymal transition in a rat model. Topics: Administration, Oral; Aniline Compounds; Animals; Disease Models, Animal; Drug Evaluation, Preclinical; Epithelial-Mesenchymal Transition; Female; Fibrosis; Humans; Peritoneal Diseases; Peritoneum; Postoperative Complications; Protein Kinase Inhibitors; Rats; Rats, Wistar; Receptor, Transforming Growth Factor-beta Type I; Signal Transduction; Surgical Procedures, Operative; Tissue Adhesions; Treatment Outcome; Triazoles | 2018 |
Novel oral transforming growth factor-β signaling inhibitor EW-7197 eradicates CML-initiating cells.
Recent strategies for treating CML patients have focused on investigating new combinations of tyrosine kinase inhibitors (TKIs) as well as identifying novel translational research agents that can eradicate CML leukemia-initiating cells (CML-LICs). However, little is known about the therapeutic benefits such CML-LIC targeting therapies might bring to CML patients. In this study, we investigated the therapeutic potential of EW-7197, an orally bioavailable transforming growth factor-β signaling inhibitor which has recently been approved as an Investigational New Drug (NIH, USA), to suppress CML-LICs in vivo. Compared to TKI treatment alone, administration of TKI plus EW-7197 to CML-affected mice significantly delayed disease relapse and prolonged survival. Notably, combined treatment with EW-7197 plus TKI was effective in eliminating CML-LICs even if they expressed the TKI-resistant T315I mutant BCR-ABL1 oncogene. Collectively, these results indicate that EW-7197 may be a promising candidate for a new therapeutic that can greatly benefit CML patients by working in combination with TKIs to eradicate CML-LICs. Topics: Aniline Compounds; Animals; Antineoplastic Combined Chemotherapy Protocols; Cell Proliferation; Disease Models, Animal; Humans; Imidazoles; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Mice; Mice, Inbred C57BL; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Pyridazines; Receptor, Transforming Growth Factor-beta Type I; Receptors, Transforming Growth Factor beta; Transfection; Transforming Growth Factor beta; Triazoles | 2016 |
TIMP-1 mediates TGF-β-dependent crosstalk between hepatic stellate and cancer cells via FAK signaling.
Transforming growth factor-β (TGF-β) signaling plays a key role in progression and metastasis of HCC. This study was undertaken to gain the proof of concept of a small-molecule inhibitor of TGF-β type I receptor kinase, EW-7197 as a potent anti-cancer therapy for HCC. We identified tissue inhibitors of metalloproteinases-1 (TIMP-1) as one of the secreted proteins of hepatic stellate cells (HSCs) and a key mediator of TGF-β-mediated crosstalk between HSCs and HCC cells. TGF-β signaling led to increased expression of TIMP-1, which activates focal adhesion kinase (FAK) signaling via its interaction with CD63. Inhibition of TGF-β signaling using EW-7197 significantly attenuated the progression and intrahepatic metastasis of HCC in an SK-HEP1-Luc orthotopic-xenograft mouse model. In addition, EW-7197 inhibited TGF-β-stimulated TIMP-1 secretion by HSCs as well as the TIMP-1-induced proliferation, motility, and survival of HCC cells. Further, EW-7197 interrupted TGF-β-mediated epithelial-to-mesenchymal transition and Akt signaling, leading to significant reductions in the motility and anchorage-independent growth of HCC cells. In conclusion, we found that TIMP-1 mediates TGF-β-regulated crosstalk between HSCs and HCC cells via FAK signaling. In addition, EW-7197 demonstrates potent in vivo anti-cancer therapeutic activity and may be a potential new anti-cancer drug of choice to treat patients with liver cancer. Topics: Aniline Compounds; Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Communication; Cell Line, Transformed; Cell Line, Tumor; Cell Movement; Cell Proliferation; Disease Models, Animal; Disease Progression; Epithelial-Mesenchymal Transition; Female; Focal Adhesion Protein-Tyrosine Kinases; Hepatic Stellate Cells; Heterografts; Humans; Liver Neoplasms; Mice; Proto-Oncogene Proteins c-akt; Signal Transduction; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta; Triazoles | 2015 |