evp-4593 has been researched along with Liver-Neoplasms* in 3 studies
3 other study(ies) available for evp-4593 and Liver-Neoplasms
Article | Year |
---|---|
QNZ alleviated hepatocellular carcinoma by targeting inflammatory pathways in a rat model.
The pathogenicity of HCC could be enhanced by TNF-α and NFκB, which are crucial parts of the inflammatory pathway inside the HCC microenvironment. Therefore, we aimed to discover the therapeutic effects of QNZ, an inhibitor of both TNF-α and NFκB, in an experimental model of HCC in rats. HCC was experimentally induced in rats by thioacetamide, and some of the rats were treated with QNZ. The expression levels of nuclear factor (NF)κB, tumor necrosis factor (TNF)-α, apoptosis signal regulating kinase (ASK)-1, β-catenin, glycogen synthase kinase (GSK)-3 and TNF receptor-associated factor (TRAF) were examined in hepatic samples. In addition, hepatic tissues were stained with hematoxylin/eosin and anti-TNF-α antibodies. QNZ blocked HCC-induced expression of both NFκB and TNF-α. It significantly reduced both α-fetoprotein and the average number of nodules and increased the survival rate of the HCC rats. Moreover, hematoxylin and eosin liver sections from the HCC rats showed vacuolated cytoplasm and necrotic nodules. All of these effects were alleviated by QNZ treatment. Finally, treating HCC rats with QNZ resulted in a reduction in the expression of TRAF, ASK-1 and β-catenin, as well as increased expression of GSK-3. In conclusion, inhibition of the inflammatory pathway in HCC with QNZ produced therapeutic effects, as indicated by an increased survival rate, reduced serum α-fetoprotein levels, decreased liver nodules and improved the hepatocyte structure. In addition, QNZ significantly reduced the expression of TRAF, ASK-1 and β-catenin that were associated with increased expression of GSK-3. Topics: alpha-Fetoproteins; Animals; beta Catenin; Carcinoma, Hepatocellular; Disease Models, Animal; Glycogen Synthase Kinase 3; Hepatocytes; Inflammation; Liver; Liver Neoplasms; MAP Kinase Kinase Kinase 5; NF-kappa B; Organ Specificity; Phenyl Ethers; Quinazolines; Rats; Rats, Sprague-Dawley; Survival Analysis; TNF Receptor-Associated Factor 2; Tumor Necrosis Factor-alpha | 2021 |
Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling.
The deubiquitinase otubain 2 (OTUB2) has been reported to play significant roles in the tumorigenesis of several cancers, but the role of OTUB2 in liver cancer is not investigated yet. In the present study, OTUB2 was found significantly upregulated in liver cancer tumor tissues and cell lines, and elevated OTUB2 indicated as a negative index for the overall survival of liver cancer patients. At the cellular level, knockdown of OTUB2 markedly inhibited liver cancer cell growth. Our further investigations revealed that knockdown of OTUB2 significantly suppressed NF-κB-driving luciferase activity, and markedly inhibited the phosphorylation of NF-κB p65 in liver cancer cells, which indicated that OTUB2 mediated liver cancer cell growth by regulating NF-κB signaling. Additionally, we found that liver cancer cell lines harboring higher OTUB2 expression were more sensitive to NF-κB inhibitors, and overexpression of OTUB2 could significantly reduce the antitumor effects of NF-κB inhibitors in liver cancer cells. This study indicated that OTUB2 could be a promising target for the treatment of liver cancer in the future. Topics: Carcinogenesis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Movement; Cell Proliferation; Gene Expression Regulation, Neoplastic; Genes, Reporter; Hepatoblastoma; Humans; Liver Neoplasms; Luciferases; Phenyl Ethers; Phenylenediamines; Phosphorylation; Quinazolines; RNA, Small Interfering; Signal Transduction; Survival Analysis; Thiolester Hydrolases; Transcription Factor RelA | 2020 |
Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-κB activation in hepatocellular carcinoma cells.
The aim of the present study was to investigate the role of NF-κB inactivation in regorafenib-induced apoptosis in human hepatocellular carcinoma SK-HEP-1 cells. SK-HEP-1 cells were treated with different concentrations of the NF-κB inhibitor 4-N-[2-(4-phenoxyphenyl)ethyl]quinazoline-4,6-diamine (QNZ) or regorafenib for different periods. The effects of QNZ and regorafenib on cell viability, expression of NF-κB-modulated anti-apoptotic proteins and apoptotic pathways were analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blotting, DNA gel electrophoresis, flow cytometry and NF-κB reporter gene assay. Inhibitors of various kinases including AKT, c-Jun N-terminal kinase (JNK), P38 and extracellular signal-regulated kinase (ERK) were used to evaluate the mechanism of regorafenib-induced NF-κB inactivation. The results demonstrated that both QNZ and regorafenib significantly inhibited the expression of anti-apoptotic proteins and triggered extrinsic and intrinsic apoptosis. We also demonstrated that regorafenib inhibited NF-κB activation through ERK dephosphorylation. Taken all together, our findings indicate that regorafenib triggers extrinsic and intrinsic apoptosis through suppression of ERK/NF-κB activation in SK-HEP-1 cells. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Liver Neoplasms; Membrane Potential, Mitochondrial; NF-kappa B; Phenyl Ethers; Phenylurea Compounds; Phosphorylation; Pyridines; Quinazolines; X-Linked Inhibitor of Apoptosis Protein | 2017 |