eupatilin and Hand-Injuries

eupatilin has been researched along with Hand-Injuries* in 1 studies

Other Studies

1 other study(ies) available for eupatilin and Hand-Injuries

ArticleYear
Hsa_circ_0045714 induced by eupatilin has a potential to promote fracture healing.
    BioFactors (Oxford, England), 2021, Volume: 47, Issue:3

    It is thought that maintaining preosteoblast viability is constructive to fracture healing. Here, we explored the effects of eupatilin on preosteoblast and addressed the mechanism associated with hsa_circ_0045714. Blood specimens were collected from 32 patients with hand fracture or calcaneus fracture. MC3T3-E1 cells were treated with eupatilin. Small interfering-RNA was transfected into MC3T3-E1 cells. The ability of MC3T3-E1 cells to survive, proliferate, migrate, and express fracture-associated proteins was examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT), 5-bromodeoxyuridine (BrdU), 24-Transwell, Quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot. Hsa_circ_0045714 was detected by qRT-PCR. NF-κB and PI3K/AKT were evaluated by Western blot. Eupatilin enhanced the survival, proliferation, and migration of MC3T3-E1 cells. Cyclin D1, cyclin E, collagen II, aggrecan, and sulfated glycosaminoglycan (sGAG) were upregulated, while MMP-13 was downregulated in eupatilin-treated cells. Hsa_circ_0045714 was increased in patients with hand and calcaneus fractures with the time-lapse of surgical operation. In eupatilin-treated cells, Hsa_circ_0045714 was also elevated. However, the beneficial effects of eupatilin were weakened in hsa_circ_0045714-deficient cells. Molecularly, eupatilin-induced blockage of NF-κB and activation of PI3K/AKT were abrogated in hsa_circ_0045714-silenced cells. Our results confirmed the beneficial effects of eupatilin in preosteoblast, indicating eupatilin was a promising candidate for fracture healing.

    Topics: Adult; Calcaneus; Female; Flavonoids; Fracture Healing; Hand Injuries; Humans; Male; Middle Aged; RNA, Circular; Signal Transduction

2021