eugenosedin-a and Hyperlipidemias

eugenosedin-a has been researched along with Hyperlipidemias* in 4 studies

Other Studies

4 other study(ies) available for eugenosedin-a and Hyperlipidemias

ArticleYear
Eugenosedin-A ameliorates hyperlipidemia-induced vascular endothelial dysfunction via inhibition of α1-adrenoceptor/5-HT activity and NADPH oxidase expression.
    The Kaohsiung journal of medical sciences, 2014, Volume: 30, Issue:3

    Eugenosedin-A (Eu-A) effects on vascular endothelial dysfunction and oxidative stress in a hyperlipidemic rat model were investigated. Rats were randomly divided into four groups: two control groups and two treatment groups. The control rats received a regular diet or high fat diet (HFD); the treatment rats fed received an HFD with 5 mg/kg Eu-A or atorvastatin for 10 weeks. No changes in serotonin levels were observed in the four groups; norepinephrine levels were enhanced in the HFD group which was attenuated by Eu-A and atorvastatin. In the HFD group, the vascular reactivity was increased by vasoconstrictors (5-nonyloxytryptamine, 5-HT, and phenylephrine) and decreased by an endothelium-dependent vasorelaxant, carbachol. Protein levels of α1-adrenergic receptors (not 5-HT1B/2A), reactive oxygen species (ROS) p47(phox), p67(phox), and gp91(phox), and oxidative damage markers 3-nitrotyrosine (3-NT) and 4-hydroxy-2-nonenal (4-HNE) were increased, but endothelial nitric oxide synthase (eNOS), P-eNOS and vasodilator-stimulated phosphoprotein phosphorylation (P-VASP) were decreased. Catalase and superoxide dismutase (SOD-1 and SOD-2) proteins were increased, but glutathione peroxidase (GPx) was decreased in the aorta. Eu-A and atorvastatin reduced vasoconstrictor-induced aortic contractions that might be related to 5-HT1B/2A and α1-adrenergic receptors inhibitory activities. Eu-A and atorvastatin improved eNOS/P-eNOS, P-VASP, GPx, and malondialdehyde (MDA) levels, and decreased ROS and oxidative damage markers. Taken together, we suggest that Eu-A can ameliorate hyperlipidemia-induced vascular endothelial dysfunction and oxidative dysregulation.

    Topics: Animals; Aorta, Thoracic; Brain; Cell Adhesion Molecules; Endothelium, Vascular; Hyperlipidemias; Male; Malondialdehyde; Microfilament Proteins; NADPH Oxidases; Norepinephrine; Oxidative Stress; Phosphoproteins; Phosphorylation; Piperazines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, Adrenergic; Serotonin; Superoxide Dismutase

2014
Eugenosedin-A prevents high-fat diet increased adhesion molecules through inhibition of MAPK- and p65-mediated NF-κB pathway in rat model.
    The Journal of pharmacy and pharmacology, 2013, Volume: 65, Issue:2

    Previous studies have shown eugenosedin-A, a 5-HT(1B/2A) and α(1)/α(2)/β(1)-adrenergic blocker, is able to decrease cholesterol levels, hyperglycaemia and inflammation in hyperlipidaemic mice induced by high-fat diet (HFD). The aim of this study is to examine the effects of eugenosedin-A on the inhibition of adhesion molecules of platelets, the aorta and acyl-coenzymeA:cholesterol acyltransferase-1 (ACAT-1) of macrophages in a hyperlipidaemic rat model.. Six-week-old Sprague-Dawley rats were randomly divided into two control and treatment groups. The control rats received either a regular diet or HFD and the treatment groups were fed HFD with either 5 mg/kg eugenosedin-A or atorvastatin for a 10-week period.. Compared with the two control groups, the HFD group had lower levels of high-density lipoprotein, higher concentrations of triglycerides, total cholesterol, low-density lipoprotein and insulin. The expression of adhesion molecules in platelets, aorta and monocyte-macrophage were enhanced by HFD. HFD also increased upstream proteins and their phosphorylated form in the aorta. In treatment groups, eugenosedin-A and atorvastatin improved HFD-induced hyperlipidaemia and levels of insulin. Eugenosedin-A reduced the upregulation of P-selectin, ICAM-1, ICAM-2, ICAM-3, VCAM, PECAM in platelets and inhibited E-selectin, ICAM-1, ICAM-2, ICAM-3, VCAM and PECAM protein levels in the aorta. Eugenosedin-A reduced the ACAT-1 protein expression of monocyte-macrophages. The expression of PKCα, MAPKs, IKKα and p65 and their phosphorylated form were reduced in treatment groups.. Taken together, hyperlipidaemia enhances the expression of adhesion molecules and ACAT-1 protein, and eugenosedin-A ameliorates those increases. Through inhibition of MAPK- and p-65-mediated NF-κB pathway, eugenosedin-A decreases the quantity of adhesion molecules.

    Topics: Acetyl-CoA C-Acetyltransferase; Animals; Aorta; Blood Platelets; Body Weight; Cell Adhesion Molecules; Diet, High-Fat; Disease Models, Animal; E-Selectin; Hyperlipidemias; Macrophages; Male; Mitogen-Activated Protein Kinase Kinases; NF-kappa B; Piperazines; Random Allocation; Rats; Rats, Sprague-Dawley; Signal Transduction; Transcription Factor RelA

2013
Suppression of inflammatory response and endothelial nitric oxide synthase downregulation in hyperlipidaemic C57BL/6J mice by eugenosedin-A.
    The Journal of pharmacy and pharmacology, 2011, Volume: 63, Issue:6

    Eugenosedin-A has been found to ameliorate high-fat diet (HFD)-induced hyperglycaemia and hyperlipidaemia in C57BL/6J mice. This study aimed to investigate the mechanisms of action of eugenosedin-A on endothelial function and inflammation in hyperlipidaemic mice.. C57BL/6J mice were randomly divided into two control groups and two treatment groups. The control mice received either a regular diet or HFD, and the treatment groups were fed HFD with either 5 mg/kg eugenosedin-A or atorvastatin for eight weeks.. Mice fed a HFD had higher concentrations of nitrate (NO) but not prostaglandin E2 (PGE2), increased tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) mRNA and inducible nitric oxide synthase (iNOS) proteins, but decreased endothelial nitric oxide synthase (eNOS) proteins. HFD-induced upregulation of iNOS is associated with p38, extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), PI3K and Akt/IKKα/p65. Eugenosedin-A and atorvastatin reduced HFD-induced TNF-α and IFN-γ mRNA, NO generation, upregulation of iNOS protein, and down-regulation of eNOS protein. Both agents inhibited p38, ERK, JNK and Akt/IKKα/p65 protein levels in the aorta. However, eugenosedin-A did not significantly reduce p38 in the liver.. Our results showed an association between obesity-induced inflammation and altered levels of TNF-α, IFN-γ, p38, ERK, JNK and Akt/IKKα/p65. Eugenosedin-A, like atorvastatin, could inhibit p38, ERK, JNK, Akt/IKKα/p65 proteins, as well as TNF-α and IFN-γ mRNA during the regulation of the obesity-induced inflammatory process.

    Topics: Animals; Anti-Inflammatory Agents; Aorta; Atorvastatin; Dietary Fats; Down-Regulation; Endothelium, Vascular; Female; Heptanoic Acids; Hyperlipidemias; Inflammation; Interferon-gamma; Liver; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Nitric Oxide; Nitric Oxide Synthase Type III; Obesity; Piperazines; Pyrroles; Random Allocation; RNA, Messenger; Tumor Necrosis Factor-alpha

2011
Eugenosedin-A prevents hyperglycaemia, hyperlipidaemia and lipid peroxidation in C57BL/6J mice fed a high-fat diet.
    The Journal of pharmacy and pharmacology, 2009, Volume: 61, Issue:4

    Eugenosedin-A is a serotonin (5-hydroxytryptamine; 5-HT) 5-HT(1B/2A) and alpha(1)/alpha(2)/beta(1)-adrenoceptor blocker with anti-oxidative, anti-inflammatory and free-radical scavenging activities. Previous reports demonstrated that 5-HT(2A) blockers could diminish hyperlipidaemia. This study therefore aimed to investigate the possible uses and mechanisms of eugenosedin-A and other agents in treating hyperlipidaemia.. C57BL/6J mice were randomly divided into seven groups, fed a regular diet or a high-fat diet alone or supplemented with one of five agents: eugenosedin-A, ketanserin, prazosin, propranolol or atorvastatin (5 mg/kg p.o.) for 8 weeks.. Compared with the regular diet, the mice fed the high-fat diet had significantly higher body weight and glucose, insulin and lipid levels. Brain malondialdehyde concentration was increased and liver glutathione peroxidase activity decreased. Addition of eugenosedin-A to the high-fat diet resulted in less weight gain and reduced hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Lipid and glucose homeostasis were related to decreased hepatic lipogenesis mRNAs and proteins (sterol regulatory element binding protein 1a, fatty acid synthase, sterol-CoA desaturase) and restored adipose peroxisome proliferator-activated receptor gamma expression. Eugenosedin-A also enhanced low-density lipoprotein receptor mRNA expression.. Eugenosedin-A may improve plasma lipid metabolism by increasing low-density lipoprotein receptor and peroxisome proliferator-activated receptor gamma expression and diminishing sterol regulatory element binding protein 1a, fatty acid synthase and sterol-CoA desaturase. Reduction of plasma glucose and lipid levels may, in turn, reduce insulin concentration, which would explain the marked improvement in obesity-related hyperglycaemia and hyperlipidaemia. Furthermore, eugenosedin-A affected malondialdehyde concentration and glutathione peroxidase activity, suggesting it may have anti-peroxidation effects in mice fed a high-fat diet.

    Topics: Adipose Tissue; Animals; Atorvastatin; Blood Glucose; Body Weight; Brain; Dietary Fats; Female; Glutathione Peroxidase; Heptanoic Acids; Hyperglycemia; Hyperlipidemias; Insulin; Ketanserin; Lipid Peroxidation; Lipogenesis; Liver; Malondialdehyde; Mice; Mice, Inbred C57BL; Piperazines; PPAR gamma; Prazosin; Propranolol; Pyrroles; Superoxide Dismutase; Weight Gain

2009