ethyl-ferulate and Neoplasms

ethyl-ferulate has been researched along with Neoplasms* in 1 studies

Other Studies

1 other study(ies) available for ethyl-ferulate and Neoplasms

ArticleYear
Mitochondriotropic Derivative of Ethyl Ferulate, a Dietary Phenylpropanoid, Exhibits Enhanced Cytotoxicity in Cancer Cells via Mitochondrial Superoxide-Mediated Activation of JNK and AKT Signalling.
    Applied biochemistry and biotechnology, 2023, Volume: 195, Issue:3

    Specific targeting of anti-cancer drugs to mitochondria is an emerging strategy to enhance cancer cell killing whilst simultaneously overcoming the problem of drug resistance, low bioavailability and limited clinical success of natural products. We have synthesized a mitochondria targeted derivative of Ethyl Ferulate (EF, a naturally occurring ester of ferulic acid), by conjugating it with triphenylphosphonium ion and compared its cytotoxicity with the parent molecule. Mito-Ethyl Ferulate (M-EF) was found to be more potent than EF (~ 400-fold) in inhibiting the growth of A549 and MCF-7 cells and suppressing the clonogenic potential of A549 cells. Notably, M-EF did not induce any cytotoxicity in normal cells (mouse normal fibroblast cells) up to a concentration of 25 μM. Furthermore, M-EF treatment induced significantly higher cell death in MCF-7 and A549 cells, as compared to EF via induction of apoptosis. M-EF treatment increased mitochondrial superoxide production and induced mitochondrial DNA damage and phosphorylation of JNK and AKT in A549 cells. Furthermore, M-EF induced increase in mitochondrial superoxide production and cytotoxicity was attenuated on pre-treatment with mitochondria-targeted antioxidant (mitoTEMPO) indicating the involvement of mitochondrial ROS in the cytotoxic effects of M-EF. Finally, in silico prediction revealed putative mitochondrial targets of M-EF which are known to regulate mitochondrial ROS and cell viability. In conclusion, the improved cytotoxic efficacy of M-EF exemplifies the use of mitochondria-specific drug delivery in future development of natural product based mitochondrial pharmacology.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Membrane Potential, Mitochondrial; Mice; Mitochondria; Neoplasms; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Superoxides

2023