ethephon has been researched along with Disease Resistance in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 7 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gao, F; He, S; Liu, Z; Mou, S; Shen, L; Su, M; Wu, Y; Yang, S | 1 |
Abdelsamad, NA; Leandro, LFS; MacIntosh, GC | 1 |
Dang, F; Eulgem, T; Guan, D; He, S; Lai, Y; Lei, D; Lei, Y; Li, X; Lin, J; Liu, Z; She, J; Wang, Y; Yu, L; Yuan, Q | 1 |
Cai, H; Cheng, J; Guan, D; He, S; Huang, R; Lai, Y; Mou, S; Qiu, A; Wu, J; Xiao, Z; Yan, Y; Yang, S | 1 |
Cai, H; Cheng, W; Guan, D; He, L; He, S; Hu, J; Li, J; Liang, J; Liu, C; Liu, Y; Liu, Z; Mou, S; Shen, L; Shi, L; Shi, W; Tang, Q; Wen, J; Wu, Y; Yang, S; Yang, T; Zhang, Y | 1 |
Cai, T; Chen, H; Deng, Y; Pan, R; Tang, R; Zeng, Y; Zhang, C; Zhang, N; Zheng, Y; Zhuang, R; Zhuang, W | 1 |
Jayasankar, S; Paliyath, G; Sherif, S | 1 |
7 other study(ies) available for ethephon and Disease Resistance
Article | Year |
---|---|
CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper.
Topics: Acetates; Amino Acid Sequence; Capsicum; Cell Death; Cell Nucleus; Cyclopentanes; Disease Resistance; DNA, Plant; Gene Expression Regulation, Plant; Gene Silencing; Homeodomain Proteins; Leucine Zippers; Luminescence; Nicotiana; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Immunity; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Protein Binding; Protein Multimerization; Protein Transport; Ralstonia solanacearum; Salicylic Acid; Transcriptional Activation; Up-Regulation | 2017 |
Induction of ethylene inhibits development of soybean sudden death syndrome by inducing defense-related genes and reducing Fusarium virguliforme growth.
Topics: Disease Resistance; Ethylenes; Fusarium; Gene Expression Regulation, Plant; Glycine max; Organophosphorus Compounds; Plant Diseases; Signal Transduction; Spores, Fungal | 2019 |
Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection.
Topics: Acetates; Capsicum; Cyclopentanes; Disease Resistance; Gene Expression Regulation, Plant; Gene Silencing; Host-Pathogen Interactions; Nicotiana; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Ralstonia solanacearum; Reverse Transcriptase Polymerase Chain Reaction; Salicylic Acid; Time Factors; Transcription Factors | 2014 |
CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper.
Topics: Abscisic Acid; Base Sequence; Capsicum; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Hot Temperature; Humidity; Molecular Sequence Data; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Ralstonia solanacearum; Sequence Analysis, DNA; Stress, Physiological; Transcription Factors | 2015 |
CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.
Topics: Abscisic Acid; Acetates; Capsicum; Cell Death; Cyclopentanes; Disease Resistance; Gene Expression Regulation, Plant; Gene Silencing; Hydrogen Peroxide; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Promoter Regions, Genetic; Protein Binding; Protein Kinases; Ralstonia solanacearum; Salicylic Acid; Signal Transduction; Transcription Factors | 2016 |
Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco.
Topics: Abscisic Acid; Acetates; Arachis; Base Sequence; Cell Nucleus; Cold Temperature; Cyclopentanes; Disease Resistance; Droughts; Gene Expression Regulation, Plant; Genes, Plant; Genetic Vectors; Nicotiana; Organophosphorus Compounds; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Ralstonia solanacearum; Salicylic Acid; Sequence Alignment; Stress, Physiological; Transcription Factors; Up-Regulation | 2017 |
Molecular characterization of peach PR genes and their induction kinetics in response to bacterial infection and signaling molecules.
Topics: Acetates; Binding Sites; Cyclopentanes; Disease Resistance; Ethylenes; Gene Expression Regulation, Plant; Organophosphorus Compounds; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plant Stomata; Plants, Genetically Modified; Promoter Regions, Genetic; Prunus; RNA, Plant; Salicylic Acid; Signal Transduction; Xanthomonas campestris | 2012 |