estradiol-3-benzoate and Pituitary-Neoplasms

estradiol-3-benzoate has been researched along with Pituitary-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for estradiol-3-benzoate and Pituitary-Neoplasms

ArticleYear
The role of MAPK11/12/13/14 (p38 MAPK) protein in dopamine agonist-resistant prolactinomas.
    BMC endocrine disorders, 2021, Nov-23, Volume: 21, Issue:1

    Prolactinoma is a functional pituitary adenoma that secretes excessive prolactin. Dopamine agonists (DAs) such as bromocriptine (BRC) are the first-line treatment for prolactinomas, but the resistance rate is increasing year by year, creating a clinical challenge. Therefore, it is urgent to explore the molecular mechanism of bromocriptine resistance in prolactinomas. Activation of the P38 MAPK pathway affects multidrug resistance in tumours. Our previous studies have demonstrated that inhibiting MAPK14 can suppress the occurrence of prolactinoma, but the role of MAPK11/12/13/14 (p38 MAPK) signalling in dopamine agonist-resistant prolactinomas is still unclear.. A prolactinoma rat model was established to determine the effect of bromocriptine on MAPK11/12/13/14 signalling. DA-resistant GH3 cells and DA-sensitive MMQ cells were used, and the role of MAPK11/12/13/14 in bromocriptine-resistant prolactinomas was preliminarily verified by western blot, RT-qPCR, ELISA, flow cytometry and CCK-8 experiments. The effects of MAPK11 or MAPK14 on bromocriptine-resistant prolactinomas were further verified by siRNA transfection experiments.. Bromocriptine was used to treat rat prolactinoma by upregulating DRD2 expression and downregulating the expression level of MAPK11/12/13/14 in vivo experiments. The in vitro experiments showed that GH3 cells are resistant to bromocriptine and that MMQ cells are sensitive to bromocriptine. Bromocriptine could significantly reduce the expression of MAPK12 and MAPK13 in GH3 cells and MMQ cells. Bromocriptine could significantly reduce the expression of MAPK11, MAPK14, NF-κB p65 and Bcl2 in MMQ but had no effect on MAPK11, MAPK14, NF-κB p65 and Bcl2 in GH3 cells. In addition, knockdown of MAPK11 and MAPK14 in GH3 cells by siRNA transfection reversed the resistance of GH3 cells to bromocriptine, and haloperidol (HAL) blocked the inhibitory effect of bromocriptine on MAPK14, MAPK11, and PRL in MMQ cells. Our findings show that MAPK11 and MAPK14 proteins are involved in bromocriptine resistance in prolactinomas.. Bromocriptine reduces the expression of MAPK11/12/13/14 in prolactinomas, and MAPK11 and MAPK14 are involved in bromocriptine resistance in prolactinomas by regulating apoptosis. Reducing the expression of MAPK11 or MAPK14 can reverse bromocriptine resistance in prolactinomas.

    Topics: Animals; Apoptosis; Bromocriptine; Cell Line, Tumor; Disease Models, Animal; Dopamine Agonists; Drug Resistance; Estradiol; Female; Gene Expression Regulation; Mitogen-Activated Protein Kinase 11; Mitogen-Activated Protein Kinase 12; Mitogen-Activated Protein Kinase 13; Mitogen-Activated Protein Kinase 14; p38 Mitogen-Activated Protein Kinases; Pituitary Neoplasms; Prolactin; Prolactinoma; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Signal Transduction

2021
Pattern of FGF-2 isoform expression correlated with its biological action in experimental prolactinomas.
    Acta neuropathologica, 2006, Volume: 112, Issue:4

    Fibroblast growth factor-2 (FGF-2) synthesized in the pituitary is involved in the formation and progression of pituitary tumors. The aim of this study was to analyze the pattern expression of two FGF-2 isoforms at different subcellular levels and to determine its correlation with prolactinoma development. Estrogen administration to male rats for 7, 20, and 60 days generated pituitary tumors, with lactotrophs being the prevalent cell type. Ultrastructural immunolabeling showed FGF-2 in the cytosolic and nuclear compartments of somatotrophs, lactotrophs and gonadotrophs, as well as in folliculo-stellate cells of normal rats. Estrogen stimulation increased FGF-2 immunoreactivity in various tumors and enhanced the expression of two FGF-2 isoforms, 18 and 22 kDa, as quantified by western blot. The 18 kDa isoform observed in cytosol extracts reached the highest levels after 60 days of hormonal stimulation and this was related to lactotroph proliferation. However, the 22 kDa FGF-2 isoform was only detected in the nuclear compartment and achieved the maximum expression at 7 days of estrogen treatment, without any correlation with lactotroph proliferation. These results suggest that the 18 kDa FGF-2 may play a role in the modulation of lactotroph proliferation in prolactinomas induced by estrogen. The overproduction of both FGF-2 isoforms appears to be implicated in autocrine-paracrine-intracrine mitogenic loops; this FGF-2 activity could lead to uncontrolled cell growth, angiogenesis, and tumor formation.

    Topics: Animals; Blotting, Western; Disease Models, Animal; Estradiol; Fibroblast Growth Factor 2; Gene Expression Regulation, Neoplastic; Immunohistochemistry; Male; Microscopy, Electron, Transmission; Molecular Weight; Pituitary Neoplasms; Prolactin; Prolactinoma; Protein Isoforms; Radioimmunoassay; Rats; Rats, Wistar; Reticulin; Time Factors

2006
Partial characterization of a novel oestrogen-induced protein in the rat adenohypophysis.
    Journal of molecular endocrinology, 1993, Volume: 10, Issue:3

    In order to detect putative markers of prolactin-secreting pituitary tumours, adult rats were subjected to long-term oestrogenization with oestradiol benzoate (OE2) on a monthly basis. At 6 months, anterior pituitaries were dissected and incubated either as tissue fragments or as dispersed cells with a [35S]methionine mix for labelling. Proteins released into the incubation medium and from tissue extracts were further analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and fluorography. Oestrogen induced the appearance in the incubation medium of a protein (OE2 band) with an M(r) of 38,000 under reducing conditions, and high specific activity. Surprisingly, such a protein was not detected in tissue extracts. The OE2 band was detectable by 7 days after the first dose of oestrogen, and remained throughout 1 year of treatment. The tumour cell line GH3 showed a similar OE2 band which was further enhanced by oestrogens. The protein was observed similarly in both female and male pituitary donors, either intact or gonadectomized, and also in rats of different strains, suggesting that its appearance was independent of the strain of rat and gonadal status. Furthermore, the OE2 band was specific for pituitary cells and not produced by other oestrogenized tissues. No alteration in the rate of generation or the electrophoretic pattern of the OE2 band was observed when pituitary cells from oestrogenized rats were metabolically labelled while being incubated with tunicamycin. Furthermore, a system for glycan detection, adsorption to Concanavalin A or incubation with endoglycosidase F also failed to show a clear amount of glycosylation of the oestrogen-induced protein. Both immunoprecipitation experiments and time-limited proteolysis with V8 protease ruled out the possibility that the OE2 band could be structurally related to either GH or prolactin. In conclusion, oestrogens induce the generation of a new monocatenary protein with an apparent M(r) of 38,000, which has at least one intramolecular disulphide loop and is not glycosylated. The OE2 band was detected only in incubation medium and never in tissue extracts.

    Topics: Adenoma; Animals; Biomarkers, Tumor; Creatine Kinase; Electrophoresis, Polyacrylamide Gel; Estradiol; Female; Glycosylation; Male; Molecular Weight; Muscle Proteins; Pituitary Gland, Anterior; Pituitary Neoplasms; Prolactin; Rats; Rats, Sprague-Dawley

1993