esi-05 has been researched along with Insulin-Resistance* in 2 studies
2 other study(ies) available for esi-05 and Insulin-Resistance
Article | Year |
---|---|
Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis.
The physiological role of the TGR5 receptor in the pancreas is not fully understood. We previously showed that activation of TGR5 in pancreatic β cells by bile acids induces insulin secretion. Glucagon released from pancreatic α cells and glucagon-like peptide 1 (GLP-1) released from intestinal L cells regulate insulin secretion. Both glucagon and GLP-1 are derived from alternate splicing of a common precursor, proglucagon by PC2 and PC1, respectively. We investigated whether TGR5 activation in pancreatic α cells enhances hyperglycemia-induced PC1 expression thereby releasing GLP-1, which in turn increases β cell mass and function in a paracrine manner. TGR5 activation augmented a hyperglycemia-induced switch from glucagon to GLP-1 synthesis in human and mouse islet α cells by GS/cAMP/PKA/cAMP-response element-binding protein-dependent activation of PC1. Furthermore, TGR5-induced GLP-1 release from α cells was via an Epac-mediated PKA-independent mechanism. Administration of the TGR5 agonist, INT-777, to db/db mice attenuated the increase in body weight and improved glucose tolerance and insulin sensitivity. INT-777 augmented PC1 expression in α cells and stimulated GLP-1 release from islets of db/db mice compared with control. INT-777 also increased pancreatic β cell proliferation and insulin synthesis. The effect of TGR5-mediated GLP-1 from α cells on insulin release from islets could be blocked by GLP-1 receptor antagonist. These results suggest that TGR5 activation mediates cross-talk between α and β cells by switching from glucagon to GLP-1 to restore β cell mass and function under hyperglycemic conditions. Thus, INT-777-mediated TGR5 activation could be leveraged as a novel way to treat type 2 diabetes mellitus. Topics: Animals; Benzene Derivatives; Benzenesulfonates; Cell Line; Cholic Acids; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Estrenes; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Secreting Cells; Glucose; Homeostasis; Humans; Insulin Resistance; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Paracrine Communication; Proprotein Convertase 1; Proprotein Convertase 2; Pyrrolidinones; Receptors, G-Protein-Coupled; Signal Transduction; Sulfones | 2016 |
Neuronal Rap1 Regulates Energy Balance, Glucose Homeostasis, and Leptin Actions.
The CNS contributes to obesity and metabolic disease; however, the underlying neurobiological pathways remain to be fully established. Here, we show that the small GTPase Rap1 is expressed in multiple hypothalamic nuclei that control whole-body metabolism and is activated in high-fat diet (HFD)-induced obesity. Genetic ablation of CNS Rap1 protects mice from dietary obesity, glucose imbalance, and insulin resistance in the periphery and from HFD-induced neuropathological changes in the hypothalamus, including diminished cellular leptin sensitivity and increased endoplasmic reticulum (ER) stress and inflammation. Furthermore, pharmacological inhibition of CNS Rap1 signaling normalizes hypothalamic ER stress and inflammation, improves cellular leptin sensitivity, and reduces body weight in mice with dietary obesity. We also demonstrate that Rap1 mediates leptin resistance via interplay with ER stress. Thus, neuronal Rap1 critically regulates leptin sensitivity and mediates HFD-induced obesity and hypothalamic pathology and may represent a potential therapeutic target for obesity treatment. Topics: Animals; Benzene Derivatives; Central Nervous System; Diet, High-Fat; Endoplasmic Reticulum Stress; Energy Metabolism; Female; Glucose; Homeostasis; Insulin Resistance; Leptin; Mice, Inbred C57BL; Neurons; Obesity; Overnutrition; rap1 GTP-Binding Proteins; Reproducibility of Results; Sulfones | 2016 |