esculetin and Neoplasms

esculetin has been researched along with Neoplasms* in 3 studies

Reviews

3 review(s) available for esculetin and Neoplasms

ArticleYear
Esculetin: A phytochemical endeavor fortifying effect against non-communicable diseases.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2016, Volume: 84

    Esculetin, a naturally occurring 6,7-dihydroxy derivative of coumarin has shown its potential role in various non-communicable diseases (NCDs) including obesity, diabetes, cardiovascular, renal failure, cancer and neurological disorders. NCDs, responsible for about 70% of the deaths occurring globally are majorly attributed to tobacco or alcohol abuse, sedentary lifestyle, and unhealthy diets. It can be managed by improving access to cost-effective treatment, care and prevention. The beneficial effects of esculetin in NCDs have been ascribed to its antioxidant, anti-proliferative and cytoprotective potential. This review attempts to summarize the beneficial effects shown by the emerging molecule and the underlying mechanisms. This may help us in improving our understanding of the molecule and may encourage the researchers to ponder over further development of esculetin as a potential therapeutic intervention in NCDs.

    Topics: Animals; Antioxidants; Cardiovascular Diseases; Diabetes Mellitus; Humans; Neoplasms; Oxidative Stress; Phytochemicals; Umbelliferones

2016
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
    Nature cell biology, 2015, Volume: 17, Issue:11

    The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction

2015
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drugs and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000