esculetin and Fibrosis

esculetin has been researched along with Fibrosis* in 7 studies

Other Studies

7 other study(ies) available for esculetin and Fibrosis

ArticleYear
Therapeutic efficacy of mitochondria-targeted esculetin in the improvement of NAFLD-NASH via modulating AMPK-SIRT1 axis.
    International immunopharmacology, 2023, Volume: 124, Issue:Pt B

    Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Fibrosis; Lipids; Liver; Mice; Mice, Inbred C57BL; Mitochondria; Non-alcoholic Fatty Liver Disease; Signal Transduction; Sirtuin 1

2023
Aesculetin Attenuates Alveolar Injury and Fibrosis Induced by Close Contact of Alveolar Epithelial Cells with Blood-Derived Macrophages via IL-8 Signaling.
    International journal of molecular sciences, 2020, Aug-01, Volume: 21, Issue:15

    Pulmonary fibrosis is a disease in which lung tissues become fibrous and thereby causes severe respiratory disturbances. Various stimuli induce infiltration of macrophages to the respiratory tract, secreting inflammatory cytokines, which subsequently leads to the development of pulmonary fibrosis. Aesculetin, a major component of the sancho tree and chicory, is known to biologically have antioxidant and anti-inflammatory effects. Human alveolar epithelial A549 cells were cultured for 24 h in conditioned media of THP-1 monocyte-derived macrophages (mCM) with 1-20 μM aesculetin. Micromolar aesculetin attenuated the cytotoxicity of mCM containing inflammatory tumor necrosis factor-α (TNF)-α and interleukin (IL)-8 as major cytokines. Aesculetin inhibited alveolar epithelial induction of the mesenchymal markers in mCM-exposed/IL-8-loaded A549 cells (≈47-51% inhibition), while epithelial markers were induced in aesculetin-treated cells subject to mCM/IL-8 (≈1.5-2.3-fold induction). Aesculetin added to mCM-stimulated A549 cells abrogated the collagen production and alveolar epithelial CXC-chemokine receptor 2 (CXCR2) induction. The production of matrix metalloproteinase (MMP) proteins in mCM-loaded A549 cells was reduced by aesculetin (≈52% reduction), in parallel with its increase in tissue inhibitor of metalloproteinases (TIMP) proteins (≈1.8-fold increase). In addition, aesculetin enhanced epithelial induction of tight junction proteins in mCM-/IL-8-exposed cells (≈2.3-2.5-fold induction). The inhalation of polyhexamethylene guanidine (PHMG) in mice accompanied neutrophil predominance in bronchoalveolar lavage fluid (BALF) and macrophage infiltration in alveoli, which was inhibited by orally administrating aesculetin to mice. Treating aesculetin to mice alleviated PHMG-induced IL-8-mediated subepithelial fibrosis and airway barrier disruption. Taken together, aesculetin may antagonize pulmonary fibrosis and alveolar epithelial barrier disruption stimulated by the infiltration of monocyte-derived macrophages, which is typical of PHMG toxicity, involving interaction of IL-8 and CXCR2. Aesculetin maybe a promising agent counteracting macrophage-mediated inflammation-associated pulmonary disorders.

    Topics: A549 Cells; Alveolar Epithelial Cells; Animals; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Interleukin-8; Macrophages; Male; Mice, Inbred BALB C; Pulmonary Alveoli; Pulmonary Fibrosis; Signal Transduction; THP-1 Cells; Umbelliferones

2020
Multiple-Purpose Connectivity Map Analysis Reveals the Benefits of Esculetin to Hyperuricemia and Renal Fibrosis.
    International journal of molecular sciences, 2020, Oct-18, Volume: 21, Issue:20

    Hyperuricemia (HUA) is a risk factor for chronic kidney disease (CKD). Serum uric acid (SUA) levels in CKD stage 3-4 patients closely correlate with hyperuricemic nephropathy (HN) morbidity. New uric acid (UA)-lowering strategies are required to prevent CKD. The multiple-purpose connectivity map (CMAP) was used to discover potential molecules against HUA and renal fibrosis. We used HUA and unilateral ureteral occlusion (UUO) model mice to verify renoprotective effects of molecules and explore related mechanisms. In vitro experiments were performed in HepG2 and NRK-52E cells induced by UA. Esculetin was the top scoring compound and lowered serum uric acid (SUA) levels with dual functions on UA excretion. Esculetin exerted these effects by inhibiting expression and activity of xanthine oxidase (XO) in liver, and modulating UA transporters in kidney. The mechanism by which esculetin suppressed XO was related to inhibiting the nuclear translocation of hexokinase 2 (HK2). Esculetin was anti-fibrotic in HUA and UUO mice through inhibiting TGF-β1-activated profibrotic signals. The renoprotection effects of esculetin in HUA mice were associated with lower SUA, alleviation of oxidative stress, and inhibition of fibrosis. Esculetin is a candidate urate-lowering drug with renoprotective activity and the ability to inhibit XO, promote excretion of UA, protect oxidative stress injury, and reduce renal fibrosis.

    Topics: Animals; Cell Nucleus; Disease Models, Animal; Down-Regulation; Fibrosis; Hep G2 Cells; Humans; Hyperuricemia; Kidney; Male; Membrane Transport Proteins; Mice; Mice, Inbred ICR; NADPH Oxidases; NF-E2-Related Factor 2; Oxidative Stress; Protein Transport; Transcriptome; Umbelliferones; Ureteral Obstruction; Uric Acid; Xanthine Oxidase

2020
Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Volume: 57

    Water extract of Hydrangea paniculata (HP) stem, rich in coumarin glycosides, has been demonstrated to have renal protective effect in several experimental kidney injury animal models. Currently, it is under pre-clinical development as a class 5 herbal drug against membranous nephropathy. However, whether it also benefits diabetic nephropathy (DN) is not clear.. This study was performed to investigate the protective effect of HP on streptozotocin-induced experimental DN, and further understand its molecular mechanisms.. In the present study, type 1 diabetes rat model was established by the intraperitoneal injection of streptozotocin. HP was orally administered every day for three months. Biochemical analysis and histopathological staining were conducted to evaluate the renal functions. In vivo pharmacokinetic study was conducted to analyse the metabolites of HP with high blood drug concentration. In vitro assay using these metabolites was performed to analyse their ability to reduce reactive oxygen species (ROS) production induced under high glucose (HG) condition by flow cytometry. Reverse transcription-polymerase chain reaction was conducted to analyse the mRNA level of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and IL6 and western blot was performed to analyse the phosphorylation status of smad 2/3 in HK2 cells under TGFβ1 stimulation.. The treatment with HP significantly reduced the blood urea nitrogen and serum creatinine content, and urine albumin excretion in diabetic rats, and increased the creatinine clearance rate. Periodic acid-schiff and methenamine staining and immunohistochemistry revealed that HP also ameliorated glomerulosclerosis and tubular vacuolar degeneration, as well as the deposition of fibronectin and collagen IV in the glomeruli. Pharmacokinetic study results revealed that the major coumarin compounds from HP were metabolised into umbelliferone and esculetin. By in vitro assay, umbelliferone and esculetin were found to significantly decrease ROS production induced by HG content, as well as increase the mRNA level of Nrf2. HP and its metabolites also can down-regulate fibronectin secretion in HK2 cells stimulated by TGFβ1 and inhibit smad2/3 phosphorylation.. HP has beneficial effect on DN by increasing Nrf2 expression and inhibiting TGF-smad signal activation. Further, it can be a novel herbal drug against DN.

    Topics: Animals; Coumarins; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibrosis; Glycosides; Hydrangea; Kidney; Molecular Targeted Therapy; NF-E2-Related Factor 2; Plant Extracts; Rats; Rats, Wistar; Smad2 Protein; Smad3 Protein; Streptozocin; Umbelliferones

2019
Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach.
    Scientific reports, 2017, 01-04, Volume: 7

    Chronic allograft damage, defined by interstitial fibrosis and tubular atrophy (IF/TA), is a leading cause of allograft failure. Few effective therapeutic options are available to prevent the progression of IF/TA. We applied a meta-analysis approach on IF/TA molecular datasets in Gene Expression Omnibus to identify a robust 85-gene signature, which was used for computational drug repurposing analysis. Among the top ranked compounds predicted to be therapeutic for IF/TA were azathioprine, a drug to prevent acute rejection in renal transplantation, and kaempferol and esculetin, two drugs not previously described to have efficacy for IF/TA. We experimentally validated the anti-fibrosis effects of kaempferol and esculetin using renal tubular cells in vitro and in vivo in a mouse Unilateral Ureteric Obstruction (UUO) model. Kaempferol significantly attenuated TGF-β1-mediated profibrotic pathways in vitro and in vivo, while esculetin significantly inhibited Wnt/β-catenin pathway in vitro and in vivo. Histology confirmed significantly abrogated fibrosis by kaempferol and esculetin in vivo. We developed an integrative computational framework to identify kaempferol and esculetin as putatively novel therapies for IF/TA and provided experimental evidence for their therapeutic activities in vitro and in vivo using preclinical models. The findings suggest that both drugs might serve as therapeutic options for IF/TA.

    Topics: Allografts; Animals; Cell Line; Computational Biology; Disease Models, Animal; Drug Discovery; Fibrosis; Graft Rejection; Humans; Informatics; Kaempferols; Kidney; Kidney Diseases; Kidney Transplantation; Male; Mice, Inbred BALB C; Signal Transduction; Umbelliferones

2017
Insulin sensitizing and cardioprotective effects of Esculetin and Telmisartan combination by attenuating Ang II mediated vascular reactivity and cardiac fibrosis.
    European journal of pharmacology, 2015, Oct-15, Volume: 765

    The combination of the angiotensin receptor blockers (ARBs) with other synthetic and natural molecules has been reported to have better safety profile and therapeutic efficacy in prevention of diabetes and its associated complications than their monotherapy. Driven by the aforementioned facts, this study was conceived to evaluate the potential additive effect of combination of Telmisartan and Esculetin in prevention of insulin resistance and associated cardiac fibrosis. Recently, we have reported that Esculetin prevented cardiovascular dysfunction associated with insulin resistance (IR) and type 2 diabetes. Insulin resistance was developed by high fat diet (HFD) feeding to Wistar rats. Telmisartan and Esculetin were administered at 10 mg/kg/day and 50 mg/kg/day doses (P.O, 2 weeks), respectively either alone or in combination. Plasma biochemical analyses, vascular reactivity and immunohistochemical experiments were performed to assess the beneficial effect of Telmisartan, Esculetin and their combination on insulin resistance and associated cardiac fibrosis. The study results showed that, co-administered Telmisartan and Esculetin ameliorated the pathological features like metabolic perturbation, morphometric alterations, vascular hyper responsiveness, extracellular matrix accumulation and the expression of fibronectin and TGF-β more effectively than monotherapy in HFD fed rats. Hence, the study urges us to conclude that the solution to IR and associated cardiovascular dysfunction may lie in the Telmisartan and Esculetin combination therapy.

    Topics: Angiotensin II; Animals; Benzimidazoles; Benzoates; Cardiotonic Agents; Dose-Response Relationship, Drug; Drug Therapy, Combination; Fibrosis; Heart Diseases; Insulin Resistance; Male; Rats; Rats, Wistar; Telmisartan; Treatment Outcome; Umbelliferones; Vasoconstriction

2015
Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model.
    Journal of immunology (Baltimore, Md. : 1950), 2009, Aug-01, Volume: 183, Issue:3

    We recently showed that IL-4-dependent oxidative stress and mitochondrial dysfunction are associated with allergic asthma. IL-4 also induces a prooxidant enzyme, 15-lipoxygenase, which predominantly expresses in asthmatic bronchial epithelium and degrades mitochondria. Esculetin (6,7-dihydroxy-2H-1-benzopyran-2-one), a plant-derived coumarin and immunomodulator, was found to have potent bronchodilating property in carbachol-induced bronchoconstriction and also reduces mitochondrial dysfunction in neurological diseases. In this study, we evaluated its potential in restoring mitochondrial dysfunction and structural changes and anti-asthma property in a mouse model of experimental asthma. In this study, we found that esculetin treatment reduced airway hyperresponsiveness, Th2 response, lung eotaxin, bronchoalveolar lavage fluid eosinophilia, airway inflammation, and OVA-specific IgE. It also reduced the expression and metabolites of 15-lipoxygenase and lipid peroxidation which is an essential prerequisite for mitochondrial dysfunction. Interestingly, esculetin treatment restored the activity of cytochrome c oxidase of electron transport chain in lung mitochondria and expression of the third subunit of cytochrome c oxidase of electron transport chain in bronchial epithelium. It reduced the cytochrome c level and caspase 9 activity in lung cytosol and restored mitochondrial structural changes and lung ATP levels. In addition, esculetin reduced subepithelial fibrosis and TGF-beta1 levels in the lung. These results suggest that esculetin not only restores mitochondrial dysfunction and structural changes but also alleviates asthmatic features.

    Topics: Animals; Anti-Asthmatic Agents; Antioxidants; Asthma; Bronchial Hyperreactivity; Electron Transport Complex IV; Fibrosis; Lipoxygenase Inhibitors; Mice; Mitochondrial Diseases; Transforming Growth Factor beta1; Treatment Outcome; Umbelliferones

2009