erlotinib has been researched along with Disease Models, Animal in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Bailey-Downs, LC; Gangjee, A; Ihnat, MA; Namjoshi, OA; Thorpe, JE; Yu, J | 1 |
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV | 1 |
2 other study(ies) available for erlotinib and Disease Models, Animal
Article | Year |
---|---|
N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines: design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimetastati
Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Drug Design; Humans; Melanoma, Experimental; Mice; Mice, Nude; Microwaves; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Receptor Protein-Tyrosine Kinases; Structure-Activity Relationship | 2013 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |