erianin has been researched along with Melanoma* in 3 studies
3 other study(ies) available for erianin and Melanoma
Article | Year |
---|---|
Erianin suppresses constitutive activation of MAPK signaling pathway by inhibition of CRAF and MEK1/2.
Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2. Topics: Colorectal Neoplasms; Humans; Melanoma; Mitogen-Activated Protein Kinase Kinases; Signal Transduction | 2023 |
In vivo and in vitro evaluation of erianin, a novel anti-angiogenic agent.
This study evaluated the anti-angiogenic activities of erianin in vivo and in vitro. Erianin, a natural product from Dendrobium chrysotoxum, caused moderate growth delay in xenografted human hepatoma Bel7402 and melanoma A375 and induced significant vascular shutdown within 4 h of administering 100 mg/kg of the drug. Erianin also displayed potent anti-angiogenic activities in vitro: it abrogated spontaneous or basic fibroblast growth factor-induced neovascularisation in chick embryo; it inhibited proliferation of human umbilical vein endothelial cells (EC(50) 34.1+/-12.7 nM), disrupted endothelial tube formation, and abolished migration across collagen and adhesion to fibronectin. Erianin also exerted selective inhibition toward endothelial cells, and quiescent endothelium showed more resistance than in proliferative and tumour conditions. In a cytoskeletal study, erianin depolymerised both F-actin and beta-tubulin, more significantly in proliferating endothelial cells than in confluent cells. In conclusion, erianin caused extensive tumour necrosis, growth delay and rapid vascular shutdown in hepatoma and melanoma models; it inhibited angiogenesis in vivo and in vitro and induced endothelial cytoskeletal disorganisation. These findings suggest that erianin has the therapeutic potential to inhibit angiogenesis in vivo and in vitro. Topics: 3T3 Cells; Angiogenesis Inhibitors; Animals; Bibenzyls; Carcinoma, Hepatocellular; Drug Evaluation, Preclinical; Female; Liver Neoplasms; Melanoma; Mice; Mice, Inbred BALB C; Neoplasm Transplantation; Phenol; Skin Neoplasms; Tumor Cells, Cultured | 2004 |
Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.
An array of cis-, trans-, and dihydrostilbenes and some N-arylbenzylamines were synthesized and evaluated for their cytotoxicity in the five cancer cell cultures A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon adenocarcinoma, SKMEL-5 melanoma, and MLM melanoma. Several cis-stilbenes, structurally similar to combretastatins, were highly cytotoxic in all five cell lines and these were also found to be active as inhibitors of tubulin polymerization. The most active compounds also inhibited the binding of colchicine to tubulin. The most potent of the new compounds, both as a tubulin polymerization inhibitor and as a cytotoxic agent, was (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene (5a). This substance was almost as potent as combretastatin A-4 (1a), the most active of the combretastatins, as a tubulin polymerization inhibitor. Compound 5a was found to be approximately 140 times more cytotoxic against HT-29 colon adenocarcinoma cells and about 10 times more cytotoxic against MCF-7 breast carcinoma cells than combretastatin A-4. However, 5a was found to be about 20 times less cytotoxic against A-549 lung carcinoma cells, 30 times less cytotoxic against SKMEL-5 melanoma cells, and 7 times less cytotoxic against MLM melanoma cells than combretastatin A-4. The relative potencies 5a greater than 8a greater than 6a for the cis, dihydro, and trans compounds, respectively, as inhibitors of tubulin polymerization are in agreement with the relative potencies previously observed for combretastatin A-4 (1a), dihydrocombretastatin A-4 (1c), and trans-combretastatin A-4 (1b). The relative potencies 5a greater than 8a greater than 6a were also reflected in the results of the cytotoxicity assays. Structure-activity relationships of this group of compounds are also discussed. Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Chemical Phenomena; Chemistry; Colchicine; Colonic Neoplasms; Humans; Lung Neoplasms; Melanoma; Molecular Structure; Polymers; Stilbenes; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured | 1991 |