erianin has been researched along with Lung-Neoplasms* in 3 studies
3 other study(ies) available for erianin and Lung-Neoplasms
Article | Year |
---|---|
Erianin inhibits human lung cancer cell growth via PI3K/Akt/mTOR pathway in vitro and in vivo.
Topics: A549 Cells; Animals; Apoptosis; Bibenzyls; Cell Line, Tumor; Cell Proliferation; Dendrobium; Humans; Lung; Lung Neoplasms; Mice; Molecular Docking Simulation; Phenol; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; TOR Serine-Threonine Kinases | 2021 |
Antitumor agents. 150. 2',3',4',5',5,6,7-substituted 2-phenyl-4-quinolones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization.
As part of our continuing search for potential anticancer drug candidates in the 2-phenyl-4-quinolone series, we have synthesized a series of 6,7-methylenedioxy-substituted and unsubstituted 2-phenyl-4-quinolones, as well as related compounds. Their in vitro inhibition of human tumor cell lines and tubulin polymerization is reported. In general, a good correlation was found between cytotoxicity and inhibition of tubulin polymerization. Compounds 7, 9, 13, 16, 22, 23, 36, and 37 showed potent inhibitory effects in both assays. All rigid analogs (47-49) and trimethoxy-substituted compounds showed little or no activity. Substitution at the 4'-position also resulted in compounds with little or no activity, except for hydroxyl or methyl groups at this position. Further investigation is underway to determine if substitution at the 3'-position will result in compounds with increased activity. Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Carcinoma, Small Cell; Cattle; Cell Division; Central Nervous System Neoplasms; Colonic Neoplasms; Female; Humans; Leukemia; Lung Neoplasms; Molecular Structure; Polymers; Quinolones; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured | 1994 |
Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.
An array of cis-, trans-, and dihydrostilbenes and some N-arylbenzylamines were synthesized and evaluated for their cytotoxicity in the five cancer cell cultures A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon adenocarcinoma, SKMEL-5 melanoma, and MLM melanoma. Several cis-stilbenes, structurally similar to combretastatins, were highly cytotoxic in all five cell lines and these were also found to be active as inhibitors of tubulin polymerization. The most active compounds also inhibited the binding of colchicine to tubulin. The most potent of the new compounds, both as a tubulin polymerization inhibitor and as a cytotoxic agent, was (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene (5a). This substance was almost as potent as combretastatin A-4 (1a), the most active of the combretastatins, as a tubulin polymerization inhibitor. Compound 5a was found to be approximately 140 times more cytotoxic against HT-29 colon adenocarcinoma cells and about 10 times more cytotoxic against MCF-7 breast carcinoma cells than combretastatin A-4. However, 5a was found to be about 20 times less cytotoxic against A-549 lung carcinoma cells, 30 times less cytotoxic against SKMEL-5 melanoma cells, and 7 times less cytotoxic against MLM melanoma cells than combretastatin A-4. The relative potencies 5a greater than 8a greater than 6a for the cis, dihydro, and trans compounds, respectively, as inhibitors of tubulin polymerization are in agreement with the relative potencies previously observed for combretastatin A-4 (1a), dihydrocombretastatin A-4 (1c), and trans-combretastatin A-4 (1b). The relative potencies 5a greater than 8a greater than 6a were also reflected in the results of the cytotoxicity assays. Structure-activity relationships of this group of compounds are also discussed. Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Chemical Phenomena; Chemistry; Colchicine; Colonic Neoplasms; Humans; Lung Neoplasms; Melanoma; Molecular Structure; Polymers; Stilbenes; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured | 1991 |