erb-041 has been researched along with Inflammation* in 4 studies
4 other study(ies) available for erb-041 and Inflammation
Article | Year |
---|---|
Inhibitory effect of estrogen receptor beta on P2X3 receptors during inflammation in rats.
Estrogen receptor beta (ERβ) has been shown to play a therapeutic role in inflammatory bowel disease (IBD). However, the mechanism underlying how ERβ exerts therapeutic effects and its relationship with P2X3 receptors (P2X3R) in rats with inflammation is not known. In our study, animal behavior tests, visceromotor reflex recording, and Western blotting were used to determine whether the therapeutic effect of ERβ in rats with inflammation was related with P2X3R. In complete Freund adjuvant (CFA)-induced chronic inflammation in rats, paw withdrawal threshold was significantly decreased which were then reversed by systemic injection of ERβ agonists, DPN or ERB-041. In 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats, weight loss, higher DAI scores, increased visceromotor responses, and inflammatory responses were reversed by application of DPN or ERB-041. The higher expressions of P2X3R in dorsal root ganglia (DRG) of CFA-treated rats and those in rectocolon and DRG of TNBS-treated rats were all decreased by injection of DPN or ERB-041. DPN application also inhibited P2X3R-evoked inward currents in DRG neurons from TNBS rats. Mechanical hyperalgesia and increased P2X3 expression in ovariectomized (OVX) CFA-treated rats were reversed by estrogen replacements. Furthermore, the expressions of extracellular signal-regulated kinase (ERK) in DRG and spinal cord dorsal horn (SCDH) and c-fos in SCDH were significantly decreased after estrogen replacement compared with those of OVX rats. The ERK antagonist U0126 significantly reversed mechanical hyperalgesia in the OVX rats. These results suggest that estrogen may play an important therapeutic role in inflammation through down-regulation of P2X3R in peripheral tissues and the nervous system, probably via ERβ, suggesting a novel therapeutic strategy for clinical treatment of inflammation. Topics: Animals; Estrogen Receptor beta; Estrogens; Female; Hyperalgesia; Inflammation; Nitriles; Oxazoles; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P2X3 | 2017 |
Selective estrogen receptor-beta agonists repress transcription of proinflammatory genes.
In addition to their role in the development and function of the reproductive system, estrogens have significant anti-inflammatory properties. Although both estrogen receptors (ERs) can mediate anti-inflammatory actions, ERbeta is a more desirable therapeutic target because ERalpha mediates the proliferative effects of estrogens on the mammary gland and uterus. In fact, selective ERbeta agonists have beneficial effects in preclinical models involving inflammation without causing growth-promoting effects on the uterus or mammary gland. However, their mechanism of action is unclear. The purpose of this study was to use microarray analysis to determine whether ERbeta-selective compounds produce their anti-inflammatory effects by repressing transcription of proinflammatory genes. We identified 49 genes that were activated by TNF-alpha in human osteosarcoma U2OS cells expressing ERbeta. Estradiol treatment significantly reduced the activation by TNF-alpha on 18 genes via ERbeta or ERalpha. Most repressed genes were inflammatory genes, such as TNF-alpha, IL-6, and CSF2. Three ERbeta-selective compounds, ERB-041, WAY-202196, and WAY-214156, repressed the expression of these and other inflammatory genes. ERB-041 was the most ERbeta-selective compound, whereas WAY-202196 and WAY-214156 were the most potent. The ERbeta-selective compounds repressed inflammatory genes by recruiting the coactivator, SRC-2. ERB-041 also repressed cytokine genes in PBMCs, demonstrating that ERbeta-selective estrogens have anti-inflammatory properties in immune cells. Our study suggests that the anti-inflammatory effects of ERB-041 and other ERbeta-selective estrogens in animal models are due to transcriptional repression of proinflammatory genes. These compounds might represent a new class of drugs to treat inflammatory disorders. Topics: Anti-Inflammatory Agents, Non-Steroidal; Cell Line, Tumor; Cytokines; Down-Regulation; Estrogen Receptor beta; Gene Expression Profiling; Humans; Inflammation; Leukocytes, Mononuclear; Oligonucleotide Array Sequence Analysis; Oxazoles; Selective Estrogen Receptor Modulators; Transcription, Genetic; Tumor Necrosis Factor-alpha | 2008 |
Estrogen receptor beta: expression profile and possible anti-inflammatory role in disease.
Estrogen receptor (ER) beta agonists have been demonstrated to possess anti-inflammatory properties in inflammatory disease models. The objective of this study was to determine whether ERbeta agonists affect in vitro and in vivo preclinical models of asthma. mRNA expression assays were validated in human and rodent tissue panels. These assays were then used to measure expression in human cells and our characterized rat model of allergic asthma. ERB-041 [7-ethenyl-2-(3-fluoro-4-hydroxyphenyl)-1,3-benzoxazol-5-ol], an ERbeta agonist, was profiled on cytokine release from interleukin-1beta-stimulated human airway smooth muscle (HASM) cells and in the rodent asthma model. Although ERbeta expression was demonstrated at the gene and protein level in HASM cells, the agonist failed to have an impact on the inflammatory response. Similarly, in vivo, we observed temporal modulation of ERbeta expression after antigen challenge. However, the agonist failed to have an impact on the model endpoints such as airway inflammation, even though plasma levels reflected linear compound exposure and was associated with an increase in receptor activation after drug administration. In these modeling systems of airway inflammation, an ERbeta agonist was ineffective. Although ERbeta agonists are anti-inflammatory in certain models, this novel study would suggest that they would not be clinically useful in the treatment of asthma. Topics: Animals; Asthma; Cells, Cultured; Estrogen Receptor beta; Gene Expression Profiling; Humans; Inflammation; Inflammation Mediators; Male; Oxazoles; Rats; Rats, Inbred BN; RNA, Messenger | 2008 |
An estrogen receptor-beta agonist is active in models of inflammatory and chemical-induced pain.
ERB-041 (2-(3-Fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol) is a selective estrogen receptor-beta agonist with activity in rodent models of rheumatoid arthritis and endometriosis. Clinical trials for these diseases are underway: however, the role of estrogen receptor-beta in modulating pain associated with inflammation remains unknown. These studies demonstrate that acutely administered ERB-041 is anti-hyperalgesic in preclinical models of chemical-induced and acute inflammatory pain, thus suggesting that ERB-041 may be useful for modulating pain associated with some types of inflammation. Topics: Animals; Dose-Response Relationship, Drug; Estradiol; Estrogen Receptor beta; Fulvestrant; Hot Temperature; Hyperalgesia; Inflammation; Male; Oxazoles; Pain; Rats; Rats, Sprague-Dawley | 2006 |