eravacycline and Neutropenia

eravacycline has been researched along with Neutropenia* in 3 studies

Other Studies

3 other study(ies) available for eravacycline and Neutropenia

ArticleYear
Eravacycline (TP-434) is efficacious in animal models of infection.
    Antimicrobial agents and chemotherapy, 2015, Volume: 59, Issue:5

    Eravacycline is a novel broad-spectrum fluorocycline antibiotic being developed for a wide range of serious infections. Eravacycline was efficacious in mouse septicemia models, demonstrating 50% protective dose (PD50) values of ≤ 1 mg/kg of body weight once a day (q.d.) against Staphylococcus aureus, including tetracycline-resistant isolates of methicillin-resistant S. aureus (MRSA), and Streptococcus pyogenes. The PD50 values against Escherichia coli isolates were 1.2 to 4.4 mg/kg q.d. In neutropenic mouse thigh infection models with methicillin-sensitive S. aureus (MSSA) and S. pyogenes, eravacycline produced 2 log10 reductions in CFU at single intravenous (i.v.) doses ranging from 0.2 to 9.5 mg/kg. In a neutropenic mouse lung infection model, eravacycline administered i.v. at 10 mg/kg twice a day (b.i.d.) reduced the level of tetracycline-resistant MRSA in the lung equivalent to that of linezolid given orally (p.o.) at 30 mg/kg b.i.d. At i.v. doses of 3 to 12 mg/kg b.i.d., eravacycline was more efficacious against tetracycline-resistant Streptococcus pneumoniae in a neutropenic lung infection model than linezolid p.o. at 30 mg/kg b.i.d. Eravacycline showed good efficacy at 2 to 10 mg/kg i.v. b.i.d., producing up to a 4.6 log10 CFU reduction in kidney bacterial burden in a model challenged with a uropathogenic E. coli isolate. Eravacycline was active in multiple murine models of infection against clinically important Gram-positive and Gram-negative pathogens.

    Topics: Animals; Anti-Bacterial Agents; Disease Models, Animal; Female; Linezolid; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Neutropenia; Pyelonephritis; Staphylococcal Infections; Staphylococcus aureus; Streptococcus pneumoniae; Tetracyclines; Thigh; Treatment Outcome

2015
Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent.
    Journal of medicinal chemistry, 2012, Jan-26, Volume: 55, Issue:2

    This and the accompanying report (DOI: 10.1021/jm201467r ) describe the design, synthesis, and evaluation of a new generation of tetracycline antibacterial agents, 7-fluoro-9-substituted-6-demethyl-6-deoxytetracyclines ("fluorocyclines"), accessible through a recently developed total synthesis approach. These fluorocyclines possess potent antibacterial activities against multidrug resistant (MDR) Gram-positive and Gram-negative pathogens. One of the fluorocyclines, 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline (17j, also known as TP-434, 50th Interscience Conference on Antimicrobial Agents and Chemotherapy Conference , Boston, MA , September 12-15, 2010 , poster F1 - 2157 ), is currently undergoing phase 2 clinical trials in patients with complicated intra-abdominal infections (cIAI).

    Topics: Animals; Anti-Bacterial Agents; Cyclophosphamide; Drug Resistance, Multiple, Bacterial; Escherichia coli Infections; Gram-Negative Bacteria; Gram-Positive Bacteria; Male; Methicillin Resistance; Mice; Microbial Sensitivity Tests; Neutropenia; Pyrrolidines; Rats; Rats, Sprague-Dawley; Ribosomes; Sepsis; Stereoisomerism; Structure-Activity Relationship; Tetracycline Resistance; Tetracyclines

2012
Fluorocyclines. 2. Optimization of the C-9 side-chain for antibacterial activity and oral efficacy.
    Journal of medicinal chemistry, 2012, Jan-26, Volume: 55, Issue:2

    Utilizing a fully synthetic route to tetracycline analogues, the C-9 side-chain of the fluorocyclines was optimized for both antibacterial activity and oral efficacy. Compounds were identified that overcome both efflux (tet(K), tet(A)) and ribosomal protection (tet(M)) tetracycline-resistance mechanisms and are active against Gram-positive and Gram-negative organisms. A murine systemic infection model was used as an oral efficacy screen to rapidly identify compounds with oral bioavailability. Two compounds were identified that exhibit both oral bioavailability in rat and clinically relevant bacterial susceptibility profiles against major respiratory pathogens. One compound demonstrated oral efficacy in rodent lung infection models that was comparable to marketed antibacterial agents.

    Topics: Administration, Oral; Animals; Anti-Bacterial Agents; Biological Availability; Cyclophosphamide; Drug Resistance, Multiple, Bacterial; Female; Gram-Negative Bacteria; Gram-Positive Bacteria; Lung; Male; Mice; Mice, Inbred BALB C; Microbial Sensitivity Tests; Neutropenia; Rats; Rats, Sprague-Dawley; Respiratory Tract Infections; Ribosomes; Sepsis; Stereoisomerism; Structure-Activity Relationship; Tetracycline Resistance; Tetracyclines

2012