er-086526 has been researched along with Cell-Transformation--Neoplastic* in 2 studies
2 other study(ies) available for er-086526 and Cell-Transformation--Neoplastic
Article | Year |
---|---|
Epithelial-to-Mesenchymal Transition Supports Ovarian Carcinosarcoma Tumorigenesis and Confers Sensitivity to Microtubule Targeting with Eribulin.
Ovarian carcinosarcoma (OCS) is an aggressive and rare tumor type with limited treatment options. OCS is hypothesized to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analyzed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated that the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumors. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts. Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a downregulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate that EMT plays a key role in OCS tumorigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes.. Genomic analyses and preclinical models of ovarian carcinosarcoma support the conversion theory for disease development and indicate that microtubule inhibitors could be used to suppress EMT and stimulate antitumor immunity. Topics: Antineoplastic Agents; Carcinoma; Carcinosarcoma; Cell Transformation, Neoplastic; Epithelial-Mesenchymal Transition; Female; Humans; Microtubules; Ovarian Neoplasms | 2022 |
Activity of Eribulin in a Primary Culture of Well-Differentiated/Dedifferentiated Adipocytic Sarcoma.
Eribulin mesylate is a novel, non-taxane, synthetic microtubule inhibitor showing antitumor activity in a wide range of tumors including soft tissue sarcomas (STS). Eribulin has been recently approved for the treatment of metastatic liposarcoma (LPS) patients previously treated with anthracyclines. This work investigated the mechanism of action of this innovative antitubulin agent in well-differentiated/dedifferentiated LPS (ALT/DDLPS) which represents one of the most common adipocytic sarcoma histotypes. A primary culture of ALT/DDLPS from a 54-year-old patient was established. The anticancer activity of eribulin on the patient-derived primary culture was assessed by MTT and tunel assays. Eribulin efficacy was compared to other drugs approved for the treatment of STS. Cell migration and morphology were examined after exposure to eribulin to better understand the drug mechanism of action. Finally, Western blot analysis of apoptosis and migration proteins was performed. The results showed that eribulin exerts its antiproliferative effect by the arrest of cell motility and induction of apoptosis. Our results highlighted the activity of eribulin in the treatment of ALT/DDLPS patients. Topics: Antineoplastic Agents; Cell Transformation, Neoplastic; Drug Screening Assays, Antitumor; Furans; Humans; Ketones; Liposarcoma; Middle Aged; Primary Cell Culture; Tubulin Modulators; Tumor Cells, Cultured | 2016 |