epz-6438 has been researched along with Disease-Models--Animal* in 10 studies
10 other study(ies) available for epz-6438 and Disease-Models--Animal
Article | Year |
---|---|
Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor.
Sensitivity has been a key issue for Enhancer of zeste homolog 2 (EZH2) inhibitors in cancer therapy. The EZH2 inhibitor EPZ-6438 was first approved by the US Food and Drug Administration (FDA) in 2020. However, its inadequate anti-cancer activity in solid tumors limits its clinical application. In this study, we utilized the multiple cancer cell lines, which are less sensitive to the EZH2 inhibitor GSK126, combining animal model and clinical data to investigate the underlying mechanism.. IncuCyte S3 was used to explore the difference in the responsiveness of hematological tumor cells and solid tumor cells to GSK126. Transcriptome and metabolome of B16F10 cells after GSK126 treatment were analyzed and the distinct changes in the metabolic profile were revealed. Real-time quantitative PCR and western blot experiments were used to further verify the multi-omics data. ChIP-qPCR was performed to detected H3K27me3 enrichment of target genes. Finally, the anti-tumor effects of combining GSK126 and lipid metabolism drugs were observed with IncuCyte S3 platform, CCK-8 and animal model respectively.. We found that although the proliferative phenotype did not show strong difference upon treatment with GSK126, the transcriptome and metabolome changed profoundly. GSK126 treatment led to broad shifts in glucose, amino acid, and lipid metabolism. Lipid synthesis was strengthened manifested by the increasing abundance of unsaturated fatty acids. SCD1 and ELOVL2 were regulated by H3K27me3 at gene regulatory region, and upregulated by EZH2 knockdown and inhibitors. SCD1 knockdown increased cellular sensitivity to GSK126. Based on the findings above, the application of the combination with SCD1 inhibitor significantly attenuated the proliferation of cancer and increased the sensitivity to GSK126 by suppressing desaturation of fatty acids.. Dysregulated lipid metabolism can blunt the sensitivity of cancer cells to GSK126. These characteristics shed light on the novel combination therapy strategies to combat tumor resistance.. National Natural Science Foundation of China (No. 81672091, No.91749107 and No. 81972966). Topics: Animals; Benzamides; Biphenyl Compounds; Cell Line, Tumor; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Enzyme Inhibitors; Humans; Lipid Metabolism; Lipogenesis; Morpholines; Neoplasms; Pyridones | 2022 |
Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration.
The capacity of 3D organoids to mimic physiological tissue organization and functionality has provided an invaluable tool to model development and disease in vitro. However, conventional organoid cultures primarily represent the homeostasis of self-organizing stem cells and their derivatives. Here, we established a novel intestinal organoid culture system composed of 8 components, mainly including VPA, EPZ6438, LDN193189, and R-Spondin 1 conditioned medium, which mimics the gut epithelium regeneration that produces hyperplastic crypts following injury; therefore, these organoids were designated hyperplastic intestinal organoids (Hyper-organoids). Single-cell RNA sequencing identified different regenerative stem cell populations in our Hyper-organoids that shared molecular features with in vivo injury-responsive Lgr5 Topics: Animals; Benzamides; Biphenyl Compounds; Cells, Cultured; Colitis; Culture Media, Conditioned; Dextran Sulfate; Disease Models, Animal; Female; Intestinal Mucosa; Intestines; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Morpholines; Organoids; Pyridones; Radiation Injuries; Regeneration; Signal Transduction; Stem Cells; Tissue Culture Techniques; Treatment Outcome; Valproic Acid | 2021 |
EZH2-mediated inhibition of KLF14 expression promotes HSCs activation and liver fibrosis by downregulating PPARγ.
Induction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel-like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown.. KLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator-activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14-overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)-treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ-6438 was utilized to treat TAA-induced rat liver fibrosis.. KLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2-regulated histone H3 lysine 27 trimethylation. Adenovirus-mediated KLF14 overexpression ameliorated TAA-induced rat liver fibrosis in PPARγ-dependent manner. Furthermore, EPZ-6438 dramatically alleviated TAA-induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation.. KLF14 exerts a critical anti-fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis. Topics: Animals; Apoptosis; Benzamides; Biphenyl Compounds; Cell Movement; Cell Proliferation; Disease Models, Animal; Down-Regulation; Enhancer of Zeste Homolog 2 Protein; G2 Phase Cell Cycle Checkpoints; Hepatic Stellate Cells; Humans; Kruppel-Like Transcription Factors; Liver Cirrhosis; Mice; Morpholines; PPAR gamma; Promoter Regions, Genetic; Pyridones; Rats; RNA Interference; RNA, Small Interfering; Thioacetamide | 2021 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Targeting EZH2 Enhances Antigen Presentation, Antitumor Immunity, and Circumvents Anti-PD-1 Resistance in Head and Neck Cancer.
Anti-programmed death-1 (PD-1) receptor-based therapeutics improve survival in patients with recurrent head and neck squamous cell carcinoma (HNSCC), but many do not benefit due to a low response rate. Herein, we identified EZH2 as a therapeutic target that enhanced tumor cell antigen presentation and subsequently sensitized resistant tumors to anti-PD-1 therapy.. EZH2 regulation of antigen presentation was defined using EZH2 inhibitors (GSK126 and EPZ6438) in human and mouse HNSCC cell lines. Mechanistic dissection of EZH2 in regulation of antigen presentation was investigated using flow cytometry, qRT-PCR, ELISA, and chromatin-immunoprecipitation assays.. EZH2 expression was negatively correlated with antigen-processing machinery pathway components in HNSCC data sets in The Cancer Genome Atlas. EZH2 inhibition resulted in significant upregulation of MHC class I expression in human and mouse human papillomavirus-negative HNSCC lines. Our results demonstrated that targeting EZH2 enhanced antigen presentation and was able to circumvent anti-PD-1 resistance. Thus, combining EZH2 targeting with anti-PD-1 may increase therapeutic susceptibility in HNSCC. Topics: Animals; Antigen Presentation; Antineoplastic Agents, Immunological; Benzamides; Biphenyl Compounds; CD8-Positive T-Lymphocytes; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Drug Resistance, Neoplasm; Enhancer of Zeste Homolog 2 Protein; Female; Head and Neck Neoplasms; Humans; Immunity, Cellular; Indoles; Mice; Mice, Inbred C57BL; Morpholines; Programmed Cell Death 1 Receptor; Pyridones | 2020 |
Inhibition of EZH2 (Enhancer of Zeste Homolog 2) Attenuates Neuroinflammation via H3k27me3/SOCS3/TRAF6/NF-κB (Trimethylation of Histone 3 Lysine 27/Suppressor of Cytokine Signaling 3/Tumor Necrosis Factor Receptor Family 6/Nuclear Factor-κB) in a Rat Mode
Neuroinflammation has been proven to play an important role in the pathogenesis of early brain injury after subarachnoid hemorrhage (SAH). EZH2 (enhancer of zeste homolog 2)-mediated H3K27Me3 (trimethylation of histone 3 lysine 27) has been recognized to play a critical role in multiple inflammatory diseases. However, there is still a lack of evidence to address the effect of EZH2 on the immune response of SAH. Therefore, the aim of this study was to determine the role of EZH2 in SAH-induced neuroinflammation and explore the effect of EZH2 inhibition with its specific inhibitor EPZ6438.. The endovascular perforation method was performed on rats to induce subarachnoid hemorrhage. EPZ6438, a specific EZH2 inhibitor, was administered intraperitoneally at 1 hour after SAH. SOCS3 (Suppressor of cytokine signaling 3) siRNA and H3K27me3 CRISPR were administered intracerebroventricularly at 48 hours before SAH to explore potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, immunofluorescence staining, and western blots were performed after SAH.. The expression of EZH2 and H3K27me3 peaked at 24 hours after SAH. In addition, inhibition of EZH2 with EPZ6438 significantly improved neurological deficits both in short-term and long-term outcome studies. Moreover, EPZ6438 treatment significantly decreased the levels of EZH2, H3K27Me3, pathway-related proteins TRAF6 (TNF [tumor necrosis factor] receptor family 6), NF-κB (nuclear factor-κB) p65, proinflammatory cytokines TNF-α, IL (interleukin)-6, IL-1β, but increased the expression levels of SOCS3 and anti-inflammatory cytokine IL-10. Furthermore, administration of SOCS3 siRNA and H3k27me3-activating CRISPR partly abolished the neuroprotective effect of EPZ6438, which indicated that the neuroprotective effect of EPZ6438 acted, at least partly, through activation of SOCS3.. In summary, the inhibition of EZH2 by EPZ6438 attenuated neuroinflammation via H3K27me3/SOCS3/TRAF6/NF-κB signaling pathway after SAH in rats. By targeting EZH2, this study may provide an innovative method to ameliorate early brain injury after SAH. Topics: Animals; Benzamides; Biphenyl Compounds; Brain; Clustered Regularly Interspaced Short Palindromic Repeats; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Histone Code; Histones; Inflammation; Male; Microglia; Morpholines; Morris Water Maze Test; Neutrophil Infiltration; NF-kappa B; Pyridones; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Rotarod Performance Test; Signal Transduction; Subarachnoid Hemorrhage; Suppressor of Cytokine Signaling 3 Protein; TNF Receptor-Associated Factor 6 | 2020 |
EZH2 inhibition reduces cartilage loss and functional impairment related to osteoarthritis.
Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain. Topics: Aged; Aged, 80 and over; Animals; Benzamides; Biphenyl Compounds; Cartilage, Articular; Chondrocytes; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Gene Expression Regulation; Humans; Interleukin-1beta; Male; Mice, Inbred C57BL; Middle Aged; Morpholines; Nerve Growth Factor; Organ Culture Techniques; Osteoarthritis; Pyridones | 2020 |
Selective targeting of histone modification fails to prevent graft versus host disease after hematopoietic cell transplantation.
Allogeneic hematopoietic cell transplantation is often complicated by graft versus host disease (GvHD), primarily mediated through allo-reactive donor T cells in the donor stem cell graft. Enhancer of Zeste Homolog 2 (EZH2), a histone-lysine N-methyltransferase and a component of the Polycomb Repressive Complex 2, has been shown to play a role in GvHD pathology. Although not yet clear, one proposed mechanism is through selective tri-methylation of lysine 27 in histone 3 (H3K27me3) that marks the promoter region of multiple pro-apoptotic genes, leading to repression of these genes in allo-reactive T cells. We found that selective pharmacologic inhibition of H3K27me3 with EPZ6438 or GSK126 did not prevent murine GvHD. This suggests the GvHD mitigating properties of DZNep are independent from H3K27me3 inhibition. Furthermore, while pharmacologic inhibition of EZH2 by DZNep has been shown to be effective in abrogating mouse GvHD, we found that DZNep was not effective in preventing GvHD in a human T cell xenograft mouse model. Although EZH2 is an attractive target to harness donor allo-reactive T cells in the post-transplant setting to modulate GvHD and the anti-leukemia effect, our results suggest that more selective and effective ways to inhibit EZH2 in human T cells are required. Topics: Adenosine; Animals; Benzamides; Biphenyl Compounds; Cells, Cultured; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Graft vs Host Disease; Hematopoietic Stem Cell Transplantation; Histone Code; Histones; Humans; Indoles; Methylation; Mice; Morpholines; Pyridones; T-Lymphocytes | 2018 |
Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies.
The majority of breast cancer models for drug discovery are based on orthotopic or subcutaneous tumours. Therapeutic responses of metastases, especially microscopic metastases, are likely to differ from these tumours due to distinct cancer-microenvironment crosstalk in distant organs. Here, to recapitulate such differences, we established an ex vivo bone metastasis model, termed bone-in-culture array or BICA, by fragmenting mouse bones preloaded with breast cancer cells via intra-iliac artery injection. Cancer cells in BICA maintain features of in vivo bone micrometastases regarding the microenvironmental niche, gene expression profile, metastatic growth kinetics and therapeutic responses. Through a proof-of-principle drug screening using BICA, we found that danusertib, an inhibitor of the Aurora kinase family, preferentially inhibits bone micrometastases. In contrast, certain histone methyltransferase inhibitors stimulate metastatic outgrowth of indolent cancer cells, specifically in the bone. Thus, BICA can be used to investigate mechanisms involved in bone colonization and to rapidly test drug efficacies on bone micrometastases. Topics: Animals; Antineoplastic Agents; Aurora Kinases; Benzamides; Biphenyl Compounds; Bone and Bones; Bone Neoplasms; Cell Line, Tumor; Disease Models, Animal; Female; Gene Expression; High-Throughput Screening Assays; Humans; Mammary Neoplasms, Experimental; Mice; Morpholines; Protein Kinase Inhibitors; Pyrazoles; Pyridones; Tissue Culture Techniques; Tumor Microenvironment | 2017 |
EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas.
Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain tumor that is located in the pons and primarily affects children. Nearly 80% of DIPGs harbor mutations in histone H3 genes, wherein lysine 27 is substituted with methionine (H3K27M). H3K27M has been shown to inhibit polycomb repressive complex 2 (PRC2), a multiprotein complex responsible for the methylation of H3 at lysine 27 (H3K27me), by binding to its catalytic subunit EZH2. Although DIPGs with the H3K27M mutation show global loss of H3K27me3, several genes retain H3K27me3. Here we describe a mouse model of DIPG in which H3K27M potentiates tumorigenesis. Using this model and primary patient-derived DIPG cell lines, we show that H3K27M-expressing tumors require PRC2 for proliferation. Furthermore, we demonstrate that small-molecule EZH2 inhibitors abolish tumor cell growth through a mechanism that is dependent on the induction of the tumor-suppressor protein p16 Topics: Animals; Benzamides; Biphenyl Compounds; Brain Neoplasms; Brain Stem Neoplasms; Cell Line, Tumor; Cell Proliferation; Chromatin Immunoprecipitation; Chromatography, Liquid; CRISPR-Cas Systems; Cyclin-Dependent Kinase Inhibitor p16; Disease Models, Animal; Enhancer of Zeste Homolog 2 Protein; Gene Knockout Techniques; Glioblastoma; Glioma; Histones; Humans; Immunohistochemistry; In Situ Hybridization, Fluorescence; Indazoles; Mice; Mice, SCID; Molecular Targeted Therapy; Morpholines; Mutation; Neoplasm Transplantation; Neural Stem Cells; Polycomb Repressive Complex 2; Pyridones; Tandem Mass Spectrometry; Tumor Suppressor Protein p14ARF | 2017 |