epsilon-(gamma-glutamyl)-lysine has been researched along with Disease-Models--Animal* in 8 studies
8 other study(ies) available for epsilon-(gamma-glutamyl)-lysine and Disease-Models--Animal
Article | Year |
---|---|
Urinary levels of pro-fibrotic transglutaminase 2 (TG2) may help predict progression of chronic kidney disease.
Renal clinical chemistry only detects kidney dysfunction after considerable damage has occurred and is imperfect in predicting long term outcomes. Consequently, more sensitive markers of early damage and better predictors of progression are being urgently sought, to better support clinical decisions and support shorter clinical trials. Transglutaminase 2 (TG2) is strongly implicated in the fibrotic remodeling that drives chronic kidney disease (CKD). We hypothesized that urinary TG2 and its ε-(γ-glutamyl)-lysine crosslink product could be useful biomarkers of kidney fibrosis and progression. Animal models: a rat 4-month 5/6th subtotal nephrectomy model of CKD and a rat 8-month streptozotocin model of diabetic kidney disease had 24-hour collection of urine, made using a metabolic cage, at regular periods throughout disease development. Patients: Urine samples from patients with CKD (n = 290) and healthy volunteers (n = 33) were collected prospectively, and progression tracked for 3 years. An estimated glomerular filtration rate (eGFR) loss of 2-5 mL/min/year was considered progressive, with rapid progression defined as > 5 mL/min/year. Assays: TG2 was measured in human and rat urine samples by enzyme-linked immunosorbent assay (ELISA) and ε-(γ-glutamyl)-lysine by exhaustive proteolytic digestion and amino acid analysis. Urinary TG2 and ε-(γ-glutamyl)-lysine increased with the development of fibrosis in both animal model systems. Urinary TG2 was 41-fold higher in patients with CKD than HVs, with levels elevated 17-fold by CKD stage 2. The urinary TG2:creatinine ratio (UTCR) was 9 ng/mmol in HV compared with 114 ng/mmol in non-progressive CKD, 1244 ng/mmol in progressive CKD and 1898 ng/mmol in rapidly progressive CKD. Both urinary TG2 and ε-(γ-glutamyl)-lysine were significantly associated with speed of progression in univariate logistic regression models. In a multivariate model adjusted for urinary TG2, ε-(γ-glutamyl)-lysine, age, sex, urinary albumin:creatinine ratio (UACR), urinary protein:creatinine ratio (UPCR), and CKD stage, only TG2 remained statistically significant. Receiver operating characteristic (ROC) curve analysis determined an 86.4% accuracy of prediction of progression for UTCR compared with 73.5% for UACR. Urinary TG2 and ε-(γ-glutamyl)-lysine are increased in CKD. In this pilot investigation, UTCR was a better predictor of progression in patients with CKD than UACR. Larger studies are now warranted to fully evaluate UTCR value in predic Topics: Adult; Aged; Aged, 80 and over; Animals; Biomarkers; Case-Control Studies; Diabetic Nephropathies; Dipeptides; Disease Models, Animal; Disease Progression; Female; Humans; Male; Middle Aged; Nephrectomy; Pilot Projects; Protein Glutamine gamma Glutamyltransferase 2; Rats; Regression Analysis; Renal Insufficiency, Chronic; Streptozocin | 2022 |
Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor.
Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1-155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1-induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1-155, suggesting a new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis. Topics: Angiotensin II; Animals; Collagen; Dipeptides; Disease Models, Animal; Fibrosis; GTP-Binding Proteins; Human Umbilical Vein Endothelial Cells; Humans; Mice; Myocardium; Myofibroblasts; Protein Glutamine gamma Glutamyltransferase 2; Small Molecule Libraries; Transforming Growth Factor beta1; Transglutaminases | 2018 |
Targeting transglutaminase 2 partially restores extracellular matrix structure but not alveolar architecture in experimental bronchopulmonary dysplasia.
The generation, maturation and remodelling of the extracellular matrix (ECM) are essential for the formation of alveoli during lung development. Alveoli formation is disturbed in preterm infants that develop bronchopulmonary dysplasia (BPD), where collagen fibres are malformed, and perturbations to lung ECM structures may underlie BPD pathogenesis. Malformed ECM structures might result from abnormal protein cross-linking, in part attributable to the increased expression and activity of transglutaminase 2 (TGM2) that have been noted in affected patient lungs, as well as in hyperoxia-based BPD animal models. The objective of the present study was to assess whether TGM2 plays a causal role in normal and aberrant lung alveolarization. Targeted deletion of Tgm2 in C57BL/6J mice increased septal thickness and reduced gas-exchange surface area in otherwise normally developing lungs. During aberrant lung alveolarization that occurred under hyperoxic conditions, collagen structures in Tgm2 Topics: Animals; Bronchopulmonary Dysplasia; Collagen; Cysteamine; Dipeptides; Disease Models, Animal; Extracellular Matrix; Female; Gene Expression Regulation, Developmental; Gene Expression Regulation, Enzymologic; GTP-Binding Proteins; Hyperoxia; Lung; Mice, Inbred C57BL; Mice, Knockout; Molecular Targeted Therapy; Protein Glutamine gamma Glutamyltransferase 2; Pulmonary Alveoli; Transglutaminases | 2018 |
Tissue transglutaminase contributes to the pathogenesis of preeclampsia and stabilizes placental angiotensin receptor type 1 by ubiquitination-preventing isopeptide modification.
Preeclampsia is a life-threatening pregnancy disorder that is widely thought to be triggered by impaired placental development. However, the placenta-related pathogenic factors are not fully identified, and their underlying mechanisms in disease development remain unclear. Here, we report that the protein level and enzyme activity of tissue transglutaminase (TG2 or tTG), the most ubiquitous member of a family of enzymes that conducts post-translational modification of proteins by forming ε-(γ-glutamyl)-lysine isopeptide bonds, are significantly elevated in placentas of preeclamptic women. TG2 is localized in the placental syncytiotrophoblasts of patients with preeclampsia where it catalyzes the isopeptide modification of the angiotensin receptor type 1 (AT1). To determine the role of elevated TG2 in preeclampsia, we used a mouse model of preeclampsia based on injection of AT1-agonistic autoantibody. A pathogenic role for TG2 in preeclampsia is suggested by in vivo experiments in which cystamine, a potent transglutaminase inhibitor, or small interfering RNA-mediated TG2 knockdown significantly attenuated autoantibody-induced hypertension and proteinuria in pregnant mice. Cystamine treatment also prevented isopeptide modification of placental AT1 receptors in preeclamptic mice. Mechanistically, we revealed that AT1-agonistic autoantibody stimulation enhances the interaction between AT1 receptor and TG2 and results in increased AT1 receptor stabilization via transglutaminase-mediated isopeptide modification in trophoblasts. Mutagenesis studies further demonstrated that TG2-mediated isopeptide modification of AT1 receptors prevents ubiquitination-dependent receptor degradation. Taken together, our studies not only identify a novel pathogenic involvement of TG2 in preeclampsia but also suggest a previously unrecognized role of TG2 in the regulation of G protein-coupled receptor stabilization by inhibiting ubiquitination-dependent degradation. Topics: Animals; Cell Line; Dipeptides; Disease Models, Animal; Female; GTP-Binding Proteins; Humans; Mice; Mutagenesis; Placenta; Pre-Eclampsia; Pregnancy; Protein Glutamine gamma Glutamyltransferase 2; Protein Processing, Post-Translational; Receptor, Angiotensin, Type 1; RNA, Small Interfering; Transglutaminases; Trophoblasts; Ubiquitination | 2014 |
Upregulation of transglutaminase and ε (γ-glutamyl)-lysine in the Fisher-Lewis rat model of chronic allograft nephropathy.
Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN).. Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography.. Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 ± 17.61 versus 2.11 ± 0.17, P < 0.001; interstitium: 13.72 ± 1.62 versus 3.19 ± 0.44, P < 0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 ± 2.71 versus 1.98 ± 0.37, P < 0.01; interstitium: 37.96 ± 17.06 versus 0.42 ± 0.11, P < 0.05), TG2 enzyme activity (1.09 ± 0.13 versus 0.41 ± 0.03 nmol/h/mg protein, P < 0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 ± 198.4 nmol/24 h versus 57.2 ± 4.1 nmol/24 h, P < 0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis.. CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CAN. Topics: Allografts; Animals; Chronic Disease; Cross-Linking Reagents; Dipeptides; Disease Models, Animal; Fluorescent Antibody Technique; GTP-Binding Proteins; Kidney Diseases; Kidney Glomerulus; Kidney Transplantation; Male; Protein Glutamine gamma Glutamyltransferase 2; Rats, Inbred F344; Rats, Inbred Lew; RNA, Messenger; Transglutaminases; Up-Regulation | 2014 |
Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking.
Liver fibrosis and cirrhosis result from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs). Previously considered irreversible, we have studied a model of cirrhosis to determine the mechanisms mediating and limiting spontaneous recovery.. A micronodular cirrhosis was induced in rats after 12 weeks of CCl(4) intoxication. Livers were analyzed for evidence of matrix degradation, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) expression, stellate cell apoptosis, tissue transglutaminase (tTg) expression, and matrix cross-linking during spontaneous recovery of up to 366 days.. Over 366 days of recovery, micronodular cirrhosis underwent significant remodeling to a macronodular cirrhosis. Expression of collagen-1 and TIMP messenger RNA (mRNA) decreased significantly and active MMPs were shown in livers during remodeling of fibrosis. Resolution also was characterized by apoptosis of HSCs, predominantly at the margins of fibrotic septa. Residual septa, not remodeled at 366 days, were characterized by tTg-mediated cross-linking and relative hypocellularity.. Recovery from comparatively advanced cirrhosis is possible and results in remodeling from a micronodular cirrhosis to a macronodular cirrhosis. We suggest resolution is limited by tTg-mediated matrix cross-linking and a failure of HSC apoptosis. Topics: Actins; Animals; Apoptosis; Carbon Tetrachloride; Collagen Type I; Cross-Linking Reagents; Dipeptides; Disease Models, Animal; Extracellular Matrix; Liver; Liver Cirrhosis; Male; Matrix Metalloproteinases; Rats; Rats, Sprague-Dawley; Remission, Spontaneous; RNA, Messenger; Tissue Inhibitor of Metalloproteinases | 2004 |
Therapeutic effects of cystamine in a murine model of Huntington's disease.
The precise cause of neuronal death in Huntington's disease (HD) is unknown. Proteolytic products of the huntingtin protein can contribute to toxic cellular aggregates that may be formed in part by tissue transglutaminase (Tgase). Tgase activity is increased in HD brain. Treatment in R6/2 transgenic HD mice, using the transglutaminase inhibitor cystamine, significantly extended survival, improved body weight and motor performance, and delayed the neuropathological sequela. Tgase activity and N(Sigma)-(gamma-L-glutamyl)-L-lysine (GGEL) levels were significantly altered in HD mice. Free GGEL, a specific biochemical marker of Tgase activity, was markedly elevated in the neocortex and caudate nucleus in HD patients. Both Tgase and GGEL immunoreactivities colocalized to huntingtin aggregates. Cystamine treatment normalized transglutaminase and GGEL levels in R6/2 mice. These findings are consistent with the hypothesis that transglutaminase activity may play a role in the pathogenesis of HD, and they identify cystamine as a potential therapeutic strategy for treating HD patients. Topics: Administration, Oral; Aged; Animals; Behavior, Animal; Biomarkers; Body Weight; Caudate Nucleus; Cystamine; Dipeptides; Disease Models, Animal; Enzyme Activation; Female; GTP-Binding Proteins; Humans; Huntington Disease; Injections, Intraperitoneal; Male; Mice; Mice, Transgenic; Middle Aged; Motor Activity; Neocortex; Neurons; Neuroprotective Agents; Protein Glutamine gamma Glutamyltransferase 2; Survival Rate; Transglutaminases; Treatment Outcome | 2002 |
The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis.
Tissue transglutaminase is a calcium-dependent enzyme that catalyzes the cross-linking of polypeptide chains, including those of extracellular matrix (ECM) proteins, through the formation of epsilon-(gamma-glutamyl) lysine bonds. This crosslinking leads to the formation of protein polymers that are highly resistant to degradation. As a consequence, the enzyme has been implicated in the deposition of ECM protein in fibrotic diseases such as pulmonary fibrosis and atherosclerosis. In this study, we have investigated the involvement of tissue transglutaminase in the development of kidney fibrosis in adult male Wistar rats submitted to subtotal nephrectomy (SNx). Groups of six rats were killed on days 7, 30, 90, and 120 after SNx. As previously described, these rats developed progressive glomerulosclerosis and tubulo-interstitial fibrosis. The tissue level of epsilon-(gamma-glutamyl) lysine cross-link (as determined by exhaustive proteolytic digestion followed by cation exchange chromatography) increased from 3.47+/- 0.94 (mean+/-SEM) in controls to 13.24+/-1.43 nmol/g protein 90 d after SNx, P = 0.01. Levels of epsilon-(gamma-glutamyl) lysine cross-link correlated well with the renal fibrosis score throughout the 120 observation days (r = 0.78, P = 0.01). Tissue homogenates showed no significant change in overall transglutaminase activity (14C putrescine incorporation assay) unless adjusted for the loss of viable tubule cells, when an increase from 5.77+/-0.35 to 13.93+/-4.21 U/mg DNA in cytosolic tissue transglutaminase activity was seen. This increase was supported by Western blot analysis, showing a parallel increase in renal tissue transglutaminase content. Immunohistochemistry demonstrated that this large increase in epsilon-(gamma-glutamyl) lysine cross-link and tissue transglutaminase took place predominantly in the cytoplasm of tubular cells, while immunofluorescence also showed low levels of the epsilon-(gamma-glutamyl) lysine cross-link in the extracellular renal interstitial space. The number of cells showing increases in tissue transglutaminase and its cross-link product, epsilon-(gamma-glutamyl) lysine appeared greater than those showing signs of typical apoptosis as determined by in situ end-labeling. This observed association between tissue transglutaminase, epsilon-(gamma-glutamyl) lysine cross-link, and renal tubulointerstitial scarring in rats submitted to SNx suggests that tissue transglutaminase may play an important role in the devel Topics: Animals; Cross-Linking Reagents; Cytoplasm; Dipeptides; Disease Models, Animal; DNA; Extracellular Matrix Proteins; Extracellular Space; Fibrosis; Fluorescent Antibody Technique; Immunohistochemistry; Kidney; Kidney Glomerulus; Kidney Tubules; Male; Nephrectomy; Rats; Rats, Wistar; Transglutaminases | 1997 |