epoetin-alfa has been researched along with Acute-Kidney-Injury* in 11 studies
1 review(s) available for epoetin-alfa and Acute-Kidney-Injury
Article | Year |
---|---|
Endocrinological disorders in acute kidney injury: an often overlooked field of clinical research.
Acute kidney injury (AKI) is a common comorbidity, affecting approximately one in five hospitalized adults. The kidney is the site for the production, metabolism or excretion of most hormones, including the production of erythropoietin (EPO), the active form of vitamin D, renin, thrombopoietin, and the excretion of insulin, catecholamines, gastrin and many other hormones. Therefore, it is reasonable to say that AKI can have a considerable impact on the endocrine system. Although the effects of AKI on various parameters, including cardiovascular parameters, serum electrolytes and acid-base disorders, neuro-humoral mechanisms and neurological outcomes have been extensively studied, the endocrinological consequences of AKI are understudied. Thyroid dysfunction, mainly euthyroid sick syndrome, hypo/hyperglycemia, bone mineral disorders, changes in EPO and atrial natriuretic peptide (ANP) levels are commonly found in AKI. EPO, thyroxine and ANP administration have been evaluated as potential tools to prevent or treat AKI with varying success, while the effects of AKI on some key hormones, including cortisol and insulin, have never been studied. Aim of this narrative review is to illustrate what is known and what is not known about the endocrinological outcomes of AKI. Few clinical trials are ongoing: however, there is a clear need for large-scale randomized controlled trials investigating the endocrinological consequences of AKI. Topics: Acute Kidney Injury; Adult; Catecholamines; Epoetin Alfa; Hormones; Humans; Insulins | 2023 |
3 trial(s) available for epoetin-alfa and Acute-Kidney-Injury
Article | Year |
---|---|
Erythropoietin in traumatic brain injury associated acute kidney injury: A randomized controlled trial.
Acute kidney injury (AKI) in traumatic brain injury (TBI) is poorly understood and it is unknown if it can be attenuated using erythropoietin (EPO).. Pre-planned analysis of patients included in the EPO-TBI (ClinicalTrials.gov NCT00987454) trial who were randomized to weekly EPO (40 000 units) or placebo (0.9% sodium chloride) subcutaneously up to three doses or until intensive care unit (ICU) discharge. Creatinine levels and urinary output (up to 7 days) were categorized according to the Kidney Disease Improving Global Outcome (KDIGO) classification. Severity of TBI was categorized with the International Mission for Prognosis and Analysis of Clinical Trials in TBI.. Of 3348 screened patients, 606 were randomized and 603 were analyzed. Of these, 82 (14%) patients developed AKI according to KDIGO (60 [10%] with KDIGO 1, 11 [2%] patients with KDIGO 2, and 11 [2%] patients with KDIGO 3). Male gender (hazard ratio [HR] 4.0 95% confidence interval [CI] 1.4-11.2, P = 0.008) and severity of TBI (HR 1.3 95% CI 1.1-1.4, P < 0.001 for each 10% increase in risk of poor 6 month outcome) predicted time to AKI. KDIGO stage 1 (HR 8.8 95% CI 4.5-17, P < 0.001), KDIGO stage 2 (HR 13.2 95% CI 3.9-45.2, P < 0.001) and KDIGO stage 3 (HR 11.7 95% CI 3.5-39.7, P < 0.005) predicted time to mortality. EPO did not influence time to AKI (HR 1.08 95% CI 0.7-1.67, P = 0.73) or creatinine levels during ICU stay (P = 0.09).. Acute kidney injury is more common in male patients and those with severe compared to moderate TBI and appears associated with worse outcome. EPO does not prevent AKI after TBI. Topics: Acute Kidney Injury; Brain Injuries, Traumatic; Creatinine; Critical Care; Epoetin Alfa; Female; Hematinics; Hospital Mortality; Humans; Injections, Subcutaneous; Male; Risk Factors; Sex Factors; Treatment Outcome; Urodynamics | 2019 |
Effect of erythropoietin on the incidence of acute kidney injury following complex valvular heart surgery: a double blind, randomized clinical trial of efficacy and safety.
Recombinant human erythropoietin (EPO) is known to provide organ protection against ischemia-reperfusion injury through its pleiotropic properties. The aim of this single-site, randomized, case-controlled, and double-blind study was to investigate the effect of pre-emptive EPO administration on the incidence of postoperative acute kidney injury (AKI) in patients with risk factors for AKI undergoing complex valvular heart surgery.. We studied ninety-eight patients with preoperative risk factors for AKI. The patients were randomly allocated to either the EPO group (n = 49) or the control group (n = 49). The EPO group received 300 IU/kg of EPO intravenously after anesthetic induction. The control group received an equivalent volume of normal saline. AKI was defined as an increase in serum creatinine >0.3 mg/dl or >50% from baseline. Biomarkers of renal injury were serially measured until five days postoperatively.. Patient characteristics and operative data, including the duration of cardiopulmonary bypass, were similar between the two groups. Incidence of postoperative AKI (32.7% versus 34.7%, P = 0.831) and biomarkers of renal injury including cystatin C and neutrophil gelatinase-associated lipocalin showed no significant differences between the groups. The postoperative increase in interleukin-6 and myeloperoxidase was similar between the groups. None of the patients developed adverse complications related to EPO administration, including thromboembolic events, throughout the study period.. Intravenous administration of 300 IU/kg of EPO did not provide renal protection in patients who are at increased risk of developing AKI after undergoing complex valvular heart surgery.. Clinical Trial.gov, NCT01758861. Topics: Acute Kidney Injury; Biomarkers; Cardiopulmonary Bypass; Case-Control Studies; Double-Blind Method; Epoetin Alfa; Erythropoietin; Female; Heart Valve Diseases; Hematinics; Hematocrit; Humans; Incidence; Kidney Function Tests; Male; Middle Aged; Postoperative Complications; Recombinant Proteins; Risk Factors; Treatment Outcome | 2013 |
Erythropoietin improves long-term outcomes in patients with acute kidney injury after coronary artery bypass grafting.
Previous studies reported the beneficial effect of erythropoietin (EPO) in acute injuries. We followed patients with and without acute kidney injury (AKI) after coronary artery bypass grafting (CABG) and evaluated the effect of EPO on long-term outcome. We also assessed the efficacy of urinary neutrophil gelatinase-associated lipocalin (uNGAL) as a predictive marker of AKI. Seventy-one patients scheduled for elective CABG were randomly given either 300 U/kg of EPO or saline before CABG. The primary outcome was AKI, and the secondary outcome was the all-cause-mortality and composite of all-cause-mortality and end stage renal disease (ESRD). Twenty-one patients had AKI, 14 (66.7%) in the placebo group and 7 (33.3%) in the EPO group (P = 0.05). Also, uNGAL was higher in the patients with AKI than in those without AKI at baseline, 2, 4, 24, and 72 hr after CABG (P = 0.011). Among patients with AKI, 2-week creatinine (Cr) was not different from baseline Cr in the EPO group, but 2-week Cr was significantly higher than baseline Cr in the placebo group (P = 0.009). All-cause-mortality (P = 0.022) and the composite of all-cause-mortality and ESRD (P = 0.003) were reduced by EPO. EPO reduces all-cause-mortality and ESRD in patients with AKI, largely due to the beneficial effect of EPO on recovery after AKI. Topics: Acute Kidney Injury; Acute-Phase Proteins; Aged; Aged, 80 and over; Biomarkers; Coronary Artery Bypass; Creatinine; Double-Blind Method; Epoetin Alfa; Erythropoietin; Female; Hematinics; Humans; Kaplan-Meier Estimate; Lipocalin-2; Lipocalins; Male; Middle Aged; Placebo Effect; Prospective Studies; Proto-Oncogene Proteins; Recombinant Proteins; Risk Factors; ROC Curve; Treatment Outcome | 2012 |
7 other study(ies) available for epoetin-alfa and Acute-Kidney-Injury
Article | Year |
---|---|
Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats.
Renal ischemia-reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL) and erythropoietin (EPO), which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD), glutathione peroxidase (GPx), and malondialdehyde (MDA) levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury. Topics: Acute Kidney Injury; Animals; Antioxidants; Apoptosis; Epoetin Alfa; Erythropoietin; Glutathione Peroxidase; Male; Malondialdehyde; Melatonin; Rats; Rats, Wistar; Reperfusion Injury; Superoxide Dismutase | 2016 |
Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury.
Treatment of renal ischemia-reperfusion (IR) injury with recombinant human erythropoietin (rhEPO) reduces acute kidney injury and improves function. We aimed to investigate whether progression to chronic kidney disease associated with acute injury was also reduced by rhEPO treatment, using in vivo and in vitro models. Rats were subjected to bilateral 40-min renal ischemia, and kidneys were studied at 4, 7, and 28 days postreperfusion for renal function, tubular injury and repair, inflammation, and fibrosis. Acute injury was modulated using rhEPO (1,000 or 5,000 IU/kg, intraperitoneally) at the time of reperfusion. Renal tubular epithelial cells or fibroblasts in culture were subjected to hypoxia or oxidative stress, with or without rhEPO (200 IU/ml), and fibrogenesis was studied. The results of the in vivo model confirmed functional and structural improvement with rhEPO at 4 days post-IR (P < 0.05). At 7 days post-IR, fibrosis and myofibroblast stimulation were increased with IR with and without rhEPO (P < 0.01). However, at 28 days post-IR, renal fibrosis and myofibroblast numbers were significantly greater with IR plus rhEPO (P < 0.01) compared with IR only. Mechanistically, rhEPO stimulated profibrotic transforming growth factor-β, oxidative stress (marker 8-hydroxy-deoxyguanosine), and phosphorylation of the signal transduction protein extracellular signal-regulated kinase. In vitro, rhEPO protected tubular epithelium from apoptosis but stimulated epithelial-to-mesenchymal transition and also protected and activated fibroblasts, particularly with oxidative stress. In summary, although rhEPO was protective of renal function and structure in acute kidney injury, the supraphysiological dose needed for renoprotection contributed to fibrogenesis and stimulated chronic kidney disease in the long term. Topics: Acute Kidney Injury; Animals; Apoptosis; Cells, Cultured; Disease Progression; Epoetin Alfa; Erythropoietin; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Humans; Kidney; Kidney Diseases; Male; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Reperfusion Injury; Treatment Outcome | 2014 |
Remote conditioning or erythropoietin before surgery primes kidneys to clear ischemia-reperfusion-damaged cells: a renoprotective mechanism?
Acute kidney injury is common, serious with no specific treatment. Ischemia-reperfusion is a common cause of acute kidney injury (AKI). Clinical trials suggest that preoperative erythropoietin (EPO) or remote ischemic preconditioning may have a renoprotective effect. Using a porcine model of warm ischemia-reperfusion-induced AKI (40-min bilateral cross-clamping of renal arteries, 48-h reperfusion), we examined the renoprotective efficacy of EPO (1,000 iu/kg iv.) or remote ischemic preconditioning (3 cycles, 5-min inflation/deflation to 200 mmHg of a hindlimb sphygmomanometer cuff). Ischemia-reperfusion induced significant kidney injury at 24 and 48 h (χ(2), 1 degree of freedom, >10 for 6/7 histopathological features). At 2 h, a panel of biomarkers including plasma creatinine, neutrophil gelatinase-associated lipocalin, and IL-1β, and urinary albumin:creatinine could be used to predict histopathological injury. Ischemia-reperfusion increased cell proliferation and apoptosis in the renal cortex but, for pretreated groups, the apoptotic cells were predominantly intratubular rather than interstitial. At 48-h reperfusion, plasma IL-1β and the number of subcapsular cells in G2-M arrest were reduced after preoperative EPO, but not after remote ischemic preconditioning. These data suggest an intrarenal mechanism acting within cortical cells that may underpin a renoprotective function for preoperative EPO and, to a limited extent, remote ischemic preconditioning. Despite equivocal longer-term outcomes in clinical studies investigating EPO as a renoprotective agent in AKI, optimal clinical dosing and administration have not been established. Our data suggest further clinical studies on the potential renoprotective effect of EPO and remote ischemic preconditioning are justified. Topics: Acute Kidney Injury; Animals; Creatinine; Disease Models, Animal; Epoetin Alfa; Erythropoietin; Female; Hindlimb; In Situ Nick-End Labeling; Ischemic Preconditioning; Preoperative Care; Recombinant Proteins; Reperfusion Injury; Swine | 2014 |
Improving outcomes of acute kidney injury using mouse renal progenitor cells alone or in combination with erythropoietin or suramin.
So far, no effective therapy is available for acute kidney injury (AKI), a common and serious complication with high morbidity and mortality. Interest has recently been focused on the potential therapeutic effect of mouse adult renal progenitor cells (MRPC), erythropoietin (EPO) and suramin in the recovery of ischemia-induced AKI. The aim of the present study is to compare MRPC with MRPC/EPO or MRPC/suramin concomitantly in the treatment of a mouse model of ischemia/reperfusion (I/R) AKI.. MRPC were isolated from adult C57BL/6-gfp mice. Male C57BL/6 mice (eight-weeks old, n = 72) were used for the I/R AKI model. Serum creatinine (Cr), blood urea nitrogen (BUN) and renal histology were detected in MRPC-, MRPC/EPO-, MRPC/suramin- and PBS-treated I/R AKI mice. E-cadherin, CD34 and GFP protein expression was assessed by immunohistochemical assay.. MRPC exhibited characteristics consistent with renal stem cells. The features of MRPC were manifested by Pax-2, Oct-4, vimentin, α-smooth muscle actin positive, and E-cadherin negative, distinguished from mesenchymal stem cells (MSC) by expression of CD34 and Sca-1. The plasticity of MRPC was shown by the ability to differentiate into osteoblasts and lipocytes in vitro. Injection of MRPC, especially MRPC/EPO and MRPC/suramin in I/R AKI mice attenuated renal damage with a decrease of the necrotic injury, peak plasma Cr and BUN. Furthermore, seven days after the injury, MRPC/EPO or MRPC/suramin formed more CD34(+) and E-cadherin+ cells than MRPC alone.. These results suggest that MRPC, in particular MRPC/EPO or MRPC/suramin, promote renal repair after injury and may be a promising therapeutic strategy. Topics: Acute Kidney Injury; Adult Stem Cells; Animals; Antigens, CD34; Cadherins; Cell Differentiation; Cells, Cultured; Drug Therapy, Combination; Epoetin Alfa; Erythropoietin; Green Fluorescent Proteins; Hematinics; Kidney; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Octamer Transcription Factor-3; PAX2 Transcription Factor; Recombinant Proteins; Suramin; Vimentin | 2013 |
The protective effect of prolyl-hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment.
Inhibition of the HIF regulating prolyl hydroxylation domain (PHDs) proteins prior to renal injury (preconditioning) has been shown to protect the kidney via activation of hypoxia-inducible transcription factors (HIF). Application of erythropoietin (EPO), one of the HIF target genes, has also been shown to be nephroprotective, and it remains unclear to what extent the effect of HIF induction is mediated by EPO. It is also unknown whether HIF activation after the onset of ischaemia (postconditioning) is still able to protect the kidney.. Using a rat model of renal ischaemia-reperfusion injury, animals were treated with the PHD inhibitor (PHD-I) 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA), vehicle (Veh) or recombinant human EPO (300 IU/kg) 6 h (ICA or Veh) or 30 min (EPO) prior to ischaemia (preconditioning) or with ICA prior to reperfusion (postconditioning). Renal function was assessed at baseline, 24 h and 72 h. After 72 h, kidneys were processed for histology and morphometric analysis. HIF immunohistochemistry and real-time polymerase chain reaction for HIF target genes, including EPO, were performed to evaluate ICA effects.. ICA treatment resulted in stabilization of HIF-1α and -2α and up-regulation of HIF target genes in a dose-dependent manner. Preconditional activation of HIF by ICA significantly improved serum creatinine levels and renal morphology in comparison to Veh (P < 0.05), while postconditional ICA treatment was ineffective. EPO therapy improved tissue morphology but had no impact on the course of serum creatinine.. These findings are in line with the concept that PHD-Is exert their protective effects through accumulation of HIF target gene products, with time requirements for increased transcription and translation of HIF-dependent genes, and suggest that their renoprotective effect is not predominately mediated by EPO. Topics: Acute Kidney Injury; Animals; Enzyme Inhibitors; Epoetin Alfa; Erythropoietin; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Immunoenzyme Techniques; Male; Procollagen-Proline Dioxygenase; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Recombinant Proteins; Reperfusion Injury; RNA, Messenger | 2012 |
A 56-year-old woman with sarcoidosis and acute renal failure.
Topics: Acute Kidney Injury; Amlodipine; Epoetin Alfa; Erythropoietin; Female; Fibrosis; Humans; Inflammation; Middle Aged; Prednisone; Recombinant Proteins; Sarcoidosis; Treatment Outcome | 2008 |
[Treatment of anemia in renal insufficiency].
Topics: Acute Kidney Injury; Anemia; Epoetin Alfa; Erythropoietin; Humans; Renal Insufficiency | 1963 |