eplerenone and Nephritis

eplerenone has been researched along with Nephritis* in 2 studies

Other Studies

2 other study(ies) available for eplerenone and Nephritis

ArticleYear
Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker.
    Hypertension (Dallas, Tex. : 1979), 2006, Volume: 47, Issue:6

    Recent clinical studies implicate proteinuria as a key prognostic factor for renal and cardiovascular complications in hypertensives. The pathogenesis of proteinuria in hypertension is, however, poorly elucidated. Podocytes constitute the final filtration barrier in the glomerulus, and their dysfunction may play a pivotal role in proteinuria. In the present study, we examined the involvement of podocyte injury in Dahl salt-hypertensive rats, an animal model prone to hypertensive glomerulosclerosis, and explored the effects of inhibition of aldosterone. Four-week-old Dahl salt-resistant and salt-sensitive rats were fed a 0.3% or 8.0% NaCl diet. Some salt-loaded Dahl salt-sensitive rats were treated with a selective aldosterone blocker eplerenone (1.25 mg/g diet) or hydralazine (0.5 mmol/L). After 6 weeks, salt-loaded Dahl salt-sensitive rats developed severe hypertension, proteinuria, and glomerulosclerosis. Immunostaining for nephrin, a constituent of slit diaphragm, was attenuated, whereas expressions of damaged podocyte markers desmin and B7-1 were upregulated in the glomeruli of salt-loaded Dahl salt-sensitive rats. Electron microscopic analysis revealed podocyte foot process effacement. Podocytes were already impaired at as early as 2 weeks of salt loading in Dahl salt-sensitive rats, when proteinuria was modestly increased. Both eplerenone and hydralazine partially reduced systemic blood pressure as measured by indirect and direct methods in salt-loaded Dahl salt-sensitive rats, but only eplerenone dramatically improved podocyte damage and retarded the progression of proteinuria and glomerulosclerosis. Our findings suggest that podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and that inhibition of aldosterone by eplerenone is protective against podocyte damage, proteinuria, and glomerulosclerosis in this hypertensive model.

    Topics: Animals; Apoptosis; Biomarkers; Blood Pressure; Eplerenone; Fibrosis; Glomerulosclerosis, Focal Segmental; Hydralazine; Hypertension; Kidney; Male; Microscopy, Electron; Mineralocorticoid Receptor Antagonists; Nephritis; Oxidative Stress; Podocytes; Proteinuria; Rats; Rats, Inbred Dahl; Spironolactone; Time Factors

2006
Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats.
    Kidney international, 2003, Volume: 63, Issue:5

    We evaluated the role of aldosterone as a mediator of renal inflammation and fibrosis in a rat model of aldosterone/salt hypertension using the selective aldosterone blocker, eplerenone.. Unnephrectomized, Sprague-Dawley rats were given 1% NaCl (salt) to drink and randomized to receive treatment for 28 days: vehicle infusion (control); 0.75 microg/hour aldosterone subcutaneous infusion; or aldosterone infusion + 100 mg/kg/day oral dose of eplerenone. Blood pressure and urinary albumin were measured and kidneys were evaluated histologically. Renal injury, inflammation, and fibrosis were assessed by immunohistochemistry, in situ hybridization, and reverse transcription-polymerase chain reaction (RT-PCR).. Aldosterone/salt induced severe hypertension compared to controls (220 +/- 4 mm Hg vs. 131 +/- 4 mm Hg, P < 0.05), which was partially attenuated by eplerenone (179 +/- 4 mm Hg, P < 0.05). In aldosterone/salt treated rats, renal histopathologic evaluation revealed severe vascular and glomerular sclerosis, fibrinoid necrosis and thrombosis, interstitial leukocyte infiltration, and tubular damage and regeneration. Aldosterone/salt increased circulating osteopontin (925.0 +/- 80.2 ng/mL vs. 53.6 +/- 6.3 ng/mL) and albuminuria (75.8 +/- 10.9 mg/24 hours vs. 13.2 +/- 3.0 mg/24 hours) compared to controls and increased expression of proinflammatory molecules. Treatment with eplerenone reduced systemic osteopontin (58.3 +/- 4.2 ng/mL), albuminuria (41.5 +/- 7.2 mg/24 hours), and proinflammatory gene expression: osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and interleukin-1beta (IL-1beta).. These findings indicate that aldosterone/salt-induced renal injury and fibrosis has inflammatory components involving macrophage infiltration and cytokine up-regulation. Attenuation of renal damage and inflammation by eplerenone supports the protective effects of aldosterone blockade in hypertensive renal disease.

    Topics: Aldosterone; Animals; Blood Pressure; Cytokines; Eplerenone; Fibrosis; Hypertension, Renal; Immunohistochemistry; In Situ Hybridization; Kidney; Macrophages; Male; Nephritis; Rats; Rats, Sprague-Dawley; Sodium Chloride; Spironolactone

2003