epiglucan has been researched along with Sick-Building-Syndrome* in 2 studies
2 review(s) available for epiglucan and Sick-Building-Syndrome
Article | Year |
---|---|
[House Dust and Its Adverse Health Effects].
In this review, we examine house dust and its effect on inhabitants' health. Residential house dust includes components from plants, pollens, microorganisms, insects, skin flakes, hairs and fibers. It also includes materials contaminated with chemicals from combustion, furniture, interior materials, electronics, cleaning agents, personal care products. Nowadays, most people spend their time indoors. Thus, dust is an important medium of exposure to pollutions. According to United States Environmental Protection Agency Exposure Factors Handbook, the estimated amount of dust ingestion is 30 mg/day for adults, and 60 mg/day for children over 1 year of age. Since 2003, we have been conducting epidemiological studies to find the association between the indoor environment and the inhabitants' health. The levels of mite allergens, endotoxins, and β-1,3-d-glucan in house dust were measured as biological factors. Semi volatile organic compounds (SVOC) such as phthalates and phosphate flame retardants (PFRs) in dust were also analyzed. As a result, we found that the ORs (95%CI) of nasal and optical symptoms of sick building syndrome (SBS) were 1.45 (1.01-2.10) and 1.47 (1.14-1.88), respectively, when there was a 10-fold increase in the levels of mite allergens. There was no association of mite allergens with allergies. Endotoxins and β-1,3-d-glucan did not show any association with SBS. Regarding SVOC, increased levels of phthalates and PFR increased the risk of allergies. The association between phthalates and increased risk of allergies was clearer among children than adults. There were no gold standards of dust sampling and pretreatment methods. Thus, caution is needed when comparing findings of various studies. Methods should accurately reflect exposure levels. Topics: Adult; Air Pollution, Indoor; Animals; Antigens, Dermatophagoides; beta-Glucans; Child; Dust; Endotoxins; Humans; Hypersensitivity; Proteoglycans; Sick Building Syndrome; Volatile Organic Compounds | 2018 |
[Dampness, biological factors and sick house syndrome].
Sick house syndrome is caused by not only chemicals but also dampness and biological factors. Many European and North American studies have shown that dampness associated with condensation, visible mold, moldy odor, and water-induced damage among others affects residents' health. Recent Japanese studies have also shown a similar significant relationship. Mold can cause infection and allergy, and can produce chemicals such as microbial volatile organic compounds (MVOCs) and (1-->3)-Beta-D-glucan. Mold exposure can be analyzed using culture-based (colony forming unit count) enumeration techniques. More recently, other nonculture-based methods of measuring mold concentrations in indoor environments have been described, which may provide more valid measures of exposure. These are based on measurement of specific mold markers in dust or air, such as ergosterol, genus-specific extracellular polysaccharides or (1-->3)-Beta-D-glucan. Mites are major indoor allergens. The gold standard for measuring exposure to mite allergens is enzyme-linked immunosorbent assay (ELISA), but it is relatively expensive and requires specialized techniques. Several simple semiquantitative dust mites allergen test have b available in Japan. Topics: Air Pollution, Indoor; Animals; Animals, Domestic; beta-Glucans; Fungi; Humans; Humidity; Proteoglycans; Pyroglyphidae; Sick Building Syndrome; Volatile Organic Compounds | 2009 |