epiglucan has been researched along with Leishmaniasis--Visceral* in 2 studies
2 other study(ies) available for epiglucan and Leishmaniasis--Visceral
Article | Year |
---|---|
Barley beta-Glucan and Zymosan induce Dectin-1 and Toll-like receptor 2 co-localization and anti-leishmanial immune response in Leishmania donovani-infected BALB/c mice.
Toll-like receptors (TLRs), TLR2 in particular, are shown to recognize various glycans and glycolipid ligands resulting in various immune effector functions. As barley β-glucan and zymosan are the glycans implicated in immunomodulation, we examined whether these ligands interact with Dectin-1, a lectin-type receptor for glycans, and TLR2 and induce immune responses that can be used against Leishmania infection in a susceptible host. The binding affinity of barley β-glucan and zymosan with Dectin-1 and TLR2 was studied in silico. Barley β-glucan- and zymosan-induced dectin-1 and TLR2 co-localization was studied by confocal microscopy and co-immunoprecipitation. These ligands-induced signalling and effector functions were assessed by Western blot analyses and various immunological assays. Finally, the anti-leishmanial potential of barley β-glucan and zymosan was tested in Leishmania donovani -infected macrophages and in L. donovani-infected BALB/c mice. Both barley β-glucan and zymosan interacted with TLR2 and dectin-1, but with a much stronger binding affinity for the latter, and therefore induced co-localization of these two receptors on BALB/c-derived macrophages. Both ligandsactivated MyD88- and Syk-mediated downstream pathways for heightened inflammatory responses in L. donovani-infected macrophages. These two ligands induced T cell-dependent host protection in L. donovani-infected BALB/c mice. These results establish a novel modus operandi of β-glucans through dectin-1 and TLR2 and suggest an immuno-modulatory potential against infectious diseases. Topics: Animals; beta-Glucans; Cells, Cultured; Hordeum; Humans; Immunity, Innate; Lectins, C-Type; Leishmania donovani; Leishmaniasis, Visceral; Macrophages; Mice; Mice, Inbred BALB C; Protein Binding; Protein Transport; Signal Transduction; Toll-Like Receptor 2; Zymosan | 2020 |
Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines.
The aim of this study was to evaluate and characterize the therapeutic potential of curdlan, a naturally occurring β-glucan immunomodulator, against visceral leishmaniasis, a fatal parasitic disease. Curdlan eliminated the liver and spleen parasite burden in a 45-day BALB/c mouse model of visceral leishmaniasis at a dosage of 10 mg/kg/day as determined by Giemsa-stained organ impression smears. Curdlan was associated with production of the disease-resolving T-helper (Th) 1 and Th17-inducing cytokines interleukin (IL)-6, IL-1β, and IL-23, as well as with production of Th17 cytokines IL-17 and IL-22, as determined by enzyme-linked immunosorbent assay (ELISA) and real time polymerase chain reaction (RT-PCR). Reversal of curdlan-mediated protection by anti-IL-17 and anti-IL-23 monoclonal antibodies showed the importance of Th17 cytokines. Significantly decreased production of both IL-17 and IL-22 by mice that received anti-IL-23 antibody suggested the essential role of IL-23 in Th17 differentiation. Although administration of recombinant IL-17 or IL-23 caused significant suppression of the organ parasite burden, with marked generation of interferon γ and nitric oxide (NO), effects were much faster for IL-17. These results documented that although both IL-23 and IL-17 play major roles in the antileishmanial effect of curdlan, the effect of IL-23 may occur indirectly, through the induction of IL-17 production. Topics: Animals; Antibodies, Monoclonal; beta-Glucans; Disease Models, Animal; Immunologic Factors; Interferon-gamma; Interleukin-1; Interleukin-17; Interleukin-1beta; Interleukin-22; Interleukin-23; Interleukins; Leishmania donovani; Leishmaniasis, Visceral; Macrophages; Mice; Mice, Inbred BALB C; Nitric Oxide; Th1 Cells; Th17 Cells | 2013 |