epiglucan and Fibrosis

epiglucan has been researched along with Fibrosis* in 2 studies

Other Studies

2 other study(ies) available for epiglucan and Fibrosis

ArticleYear
Resolution of fibrosis in mdx dystrophic mouse after oral consumption of N-163 strain of Aureobasidium pullulans produced β-glucan.
    Scientific reports, 2023, 10-09, Volume: 13, Issue:1

    Recent advances in the management of Duchenne muscular dystrophy (DMD), such as exon skipping and gene therapy, though have reached a clinical stage, the outcome at its best is still considered suboptimal. In this study, we evaluated a novel N-163 strain of Aureobasidium pullulans produced β-glucan (Neu-REFIX) for its potential as an adjuvant to slow down the progression of the disease by anti-inflammatory and anti-fibrotic effects. In this study, 45 mice in the three groups, 15 each in a group; Gr. 1 normal mice, Gr.2 mdx mice as vehicle, and Gr.3 mdx mice administered the N-163 β-glucan for 45 days. The N-163 β-glucan group showed a significant decrease in the plasma ALT, AST, and LDH levels (126 ± 69 U/l, 634 ± 371 U/l, 3335 ± 1258 U/l) compared with the vehicle group (177 ± 27 U/l, 912 ± 126 U/l, 4186 ± 398 U/l). Plasma TGF-β levels increased, and plasma IL-13 levels decreased in the N-163 group. The inflammation score of HE-stained muscle sections in the N-163 group (1.5 ± 0.8) was lower than that in the vehicle group (2.0 ± 0.8). The N-163 strain β-glucan group (24.22 ± 4.80) showed a significant decrease in the fibrosis area (Masson's Trichrome-positive area) compared with the vehicle group (36.78 ± 5.74). The percentage of centrally nucleated fibres evaluated by Masson's trichrome staining was 0 in the normal group, while it increased to 80% in the vehicle group but remained at 76.8% in the N-163 group. The N-163 β-glucan group showed a significant decrease in the fibrosis area. Considering their safety and easy oral consumption, Neu-REFIX β-glucan could be worth large multicentre clinical studies as adjuvant in slowing down the progress of DMD.

    Topics: Animals; beta-Glucans; Fibrosis; Mice; Mice, Inbred mdx; Muscle, Skeletal; Muscular Dystrophy, Duchenne

2023
Effects of functional β-glucan on proliferation, differentiation, metabolism and its anti-fibrosis properties in muscle cells.
    International journal of biological macromolecules, 2018, Oct-01, Volume: 117

    Skeletal muscles plays a crucial role in metabolism and exercise. Fuctional β-glucan is polysaccharide that is found in the cell walls of cereal, which is known to reduce cholesterol and lipid, prevent diabetes, cancer and cardiovascular diseases. In an attempt to identify β-glucan that could promote skeletal muscle function, we analyzed the proliferation, differentiation, metabolism and anti-fibrotic properties of β-glucan in C2C12 muscle cells. Treatment of β-glucan in C2C12 myoblasts led to increased proliferation and differentiation. Besides that, we found that C2C12 myotubes treated with β-glucan displayed a fast-to-slow muscle fiber conversion and improved oxidative metabolism. Further study revealed that β-glucan treatment could prevent myotubes from becoming myofibroblasts. Together, our study suggests that functional β-glucan might have a therapeutic potential to improve skeletal muscle function, which might contribute to the development of β-glucan.

    Topics: Animals; beta-Glucans; Cell Differentiation; Cell Proliferation; Fibrosis; Male; Mice; Muscle Fibers, Skeletal; Muscle, Skeletal; Myoblasts; Phenotype

2018