epiglucan has been researched along with Cognitive-Dysfunction* in 7 studies
1 trial(s) available for epiglucan and Cognitive-Dysfunction
Article | Year |
---|---|
Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial.
Topics: beta-Glucans; Cognitive Dysfunction; Dietary Supplements; Fatigue Syndrome, Chronic; Humans; Quality of Life; Saccharomyces cerevisiae | 2023 |
6 other study(ies) available for epiglucan and Cognitive-Dysfunction
Article | Year |
---|---|
β-Glucan attenuates cognitive impairment of APP/PS1 mice via regulating intestinal flora and its metabolites.
The intestinal flora has been shown to be involved in the progression of Alzheimer's disease (AD) and can be improved by β-glucan, a polysaccharide derived from Saccharomyces cerevisiae, which affects cognitive function through the intestinal flora. However, it is not known if this effect of β-glucan is involved in AD.. This study used behavioral testing to measure cognitive function. After that, high-throughput 16 S rRNA gene sequencing and GC-MS were used to analyze the intestinal microbiota and metabolite SCFAs of AD model mice, and further explore the relationship between intestinal flora and neuroinflammation. Finally, the expressions of inflammatory factors in the mouse brain were detected by Western blot and Elisa methods.. We found that appropriate supplementation of β-glucan during the progression of AD can improve cognitive impairment and reduce A β plaque deposition. In addition, supplementation of β-glucan can also promote changes in the composition of the intestinal flora, thereby changing the flora metabolites in the intestinal content and reduce the activation of inflammatory factors and microglia in the cerebral cortex and hippocampus through the brain-gut axis. While reducing the expression of inflammatory factors in the hippocampus and cerebral cortex, thereby controlling neuroinflammation.. The imbalance of the gut microbiota and metabolites plays a role in the progression of AD; β-glucan blocks the development of AD by improving the gut microbiota and its metabolites and reducing neuroinflammation. β-Glucan is a potential strategy for the treatment of AD by reshaping the gut microbiota and improving its metabolites. Topics: Alzheimer Disease; Animals; beta-Glucans; Cognitive Dysfunction; Disease Models, Animal; Gastrointestinal Microbiome; Mice; Mice, Transgenic; Neuroinflammatory Diseases | 2023 |
β-Glucan from Lentinula edodes prevents cognitive impairments in high-fat diet-induced obese mice: involvement of colon-brain axis.
Long-term high fat (HF) diet intake can cause neuroinflammation and cognitive decline through the gut-brain axis. (1, 3)/(1, 6)-β-glucan, an edible polysaccharide isolated from medical mushroom, Lentinula edodes (L. edodes), has the potential to remodel gut microbiota. However, the effects of L. edodes derived β-glucan against HF diet-induced neuroinflammation and cognitive decline remain unknown. This study aimed to evaluate the neuroprotective effect and mechanism of dietary L edodes β-glucan supplementation against the obesity-associated cognitive decline in mice fed by a HF diet.. C57BL/6J male mice were fed with either a lab chow (LC), HF or HF with L. edodes β-glucan supplementation diets for 7 days (short-term) or 15 weeks (long-term). Cognitive behavior was examined; blood, cecum content, colon and brain were collected to evaluate metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology.. We reported that short-term and long-term L. edodes β-glucan supplementation prevented the gut microbial composition shift induced by the HF diet. Long-term L. edodes β-glucan supplementation prevented the HF diet-induced recognition memory impairment assessed by behavioral tests (the temporal order memory, novel object recognition and Y-maze tests). In the prefrontal cortex and hippocampus, the β-glucan supplementation ameliorated the alteration of synaptic ultrastructure, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits induced by HF diet. Furthermore, the β-glucan supplementation increased the mucosal thickness, upregulated the expression of tight junction protein occludin, decreased the plasma LPS level, and inhibited the proinflammatory macrophage accumulation in the colon of mice fed by HF diet.. This study revealed that L. edodes β-glucan prevents cognitive impairments induced by the HF diet, which may occur via colon-brain axis improvement. The finding suggested that dietary L. edodes β-glucan supplementation may be an effective nutritional strategy to prevent obesity-associated cognitive decline. Topics: Animals; beta-Glucans; Brain; Cognitive Dysfunction; Colon; Diet, High-Fat; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Shiitake Mushrooms | 2021 |
β-1,3-glucan Attenuated Chronic Unpredictable Mild Stress-induced Cognitive Impairment in Rodents via Normalizing Corticosterone Levels.
Chronic stress elevates the cortisol beyond normal levels, which affects cognition including learning & memory. This injurious effect is primarily mediated via over excitation of metabotropic glucocorticoid receptors (mGR).. The present study was aimed to appraise the neuroprotective effects of naturally occurring molecule β-1,3-glucan by interfering with stress-cortisol-mGR axis. Our data of virtual screening (in silico) exhibited the promising interactions of β-glucan with the mGR. Therefore, the study was extended to evaluate its efficacy (2.5, 5 and 10 mg/kg/ i.p) in an animal model of chronic unpredictable mild stress (CUMS, 28 days) induced memory impairment.. Results of the current study revealed the β-glucan provided dose dependent protection against deleterious effects of stress on learning and memory associated parameters observed in Morris water maze (MWM) task. At higher tested doses, it has also significantly antagonized the stress induced weight loss and corticosterone elevation. Topics: Animals; beta-Glucans; Cognitive Dysfunction; Corticosterone; Disease Models, Animal; Glucans; Hippocampus; Maze Learning; Rodentia; Stress, Psychological | 2020 |
β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice.
"Western" style dietary patterns are characterized by a high proportion of highly processed foods rich in fat and low in fiber. This diet pattern is associated with a myriad of metabolic dysfunctions, including neuroinflammation and cognitive impairment. β-glucan, the major soluble fiber in oat and barley grains, is fermented in the lower gastrointestinal tract, potentially impacting the microbial ecosystem and thus may improve elements of cognition and brain function via the gut-brain axis. The present study aimed to evaluate the effect of β-glucan on the microbiota gut-brain axis and cognitive function in an obese mouse model induced by a high-fat and fiber-deficient diet (HFFD).. After long-term supplementation for 15 weeks, β-glucan prevented HFFD-induced cognitive impairment assessed behaviorally by object location, novel object recognition, and nesting building tests. In the hippocampus, β-glucan countered the HFFD-induced microglia activation and its engulfment of synaptic puncta, and upregulation of proinflammatory cytokine (TNF-α, IL-1β, and IL-6) mRNA expression. Also, in the hippocampus, β-glucan significantly promoted PTP1B-IRS-pAKT-pGSK3β-pTau signaling for synaptogenesis, improved the synaptic ultrastructure examined by transmission electron microscopy, and increased both pre- and postsynaptic protein levels compared to the HFFD-treated group. In the colon, β-glucan reversed HFFD-induced gut barrier dysfunction increased the thickness of colonic mucus (Alcian blue and mucin-2 glycoprotein immunofluorescence staining), increased the levels of tight junction proteins occludin and zonula occludens-1, and attenuated bacterial endotoxin translocation. The HFFD resulted in microbiota alteration, effects abrogated by long-term β-glucan supplementation, with the β-glucan effects on Bacteroidetes and its lower taxa particularly striking. Importantly, the study of short-term β-glucan supplementation for 7 days demonstrated pronounced, rapid differentiating microbiota changes before the cognitive improvement, suggesting the possible causality of gut microbiota profile on cognition. In support, broad-spectrum antibiotic intervention abrogated β-glucan's effects on improving cognition, highlighting the role of gut microbiota to mediate cognitive behavior.. This study provides the first evidence that β-glucan improves indices of cognition and brain function with major beneficial effects all along the gut microbiota-brain axis. Our data suggest that elevating consumption of β-glucan-rich foods is an easily implementable nutritional strategy to alleviate detrimental features of gut-brain dysregulation and prevent neurodegenerative diseases associated with Westernized dietary patterns. Video Abstract. Topics: Animals; beta-Glucans; Brain; Cognitive Dysfunction; Diet, High-Fat; Dietary Fiber; Gastrointestinal Microbiome; Male; Mice; Mice, Inbred C57BL; Obesity | 2020 |
Plasma (1 → 3)-β-D-glucan and suPAR levels correlate with neurocognitive performance in people living with HIV on antiretroviral therapy: a CHARTER analysis.
Despite antiretroviral therapy (ART), people living with HIV (PLWH) have higher rates of non-AIDS disorders, such as neurocognitive (NC) impairment (NCI) than the general population. (1-3)-β-D-Glucan (BDG) is a fungal cell wall component which serves as a biomarker for gut barrier integrity failure and microbial and fungal translocation. The primary objective of this study was to determine whether higher plasma and cerebrospinal fluid (CSF) levels of BDG and suPAR were associated with NCI in PLWH. Paired blood and CSF samples were collected cross-sectionally from 61 male adult PLWH on ART (95% virally suppressed) who underwent a detailed NC assessment as part of the prospective CHARTER study between 2005 and 2015. BDG and soluble urokinase plasminogen activator receptor (suPAR) were measured in frozen blood and CSF samples while soluble CD14 (sCD14), intestinal fatty acid binding protein (IFABP), and CD4/CD8 ratio were measured in blood only. Spearman's rho correlation analysis assessed associations between BDG, other biomarkers, and NC performance. Median BDG levels were 18 pg/mL in plasma (range 2-60 pg/mL) and 20 pg/mL in CSF (range 0-830 pg/mL). Higher levels of plasma BDG were associated with worse NC performance (Spearman's rho = - 0.32; p = 0.013) and with the presence of NCI (p = 0.027). A plasma BDG cutoff of > 30 pg/mL was 30% sensitive and 100% specific for NCI. After adjusting for age, higher plasma suPAR levels were also associated with worse NC performance (p < 0.01). No significant associations were observed between the remaining biomarkers and the NC variables. Plasma levels of BDG and age-adjusted suPAR may be new biomarkers for the detection of NCI in PLWH on suppressive ART. Topics: Adult; Anti-Retroviral Agents; beta-Glucans; Biomarkers; Cognitive Dysfunction; Cross-Sectional Studies; Female; HIV Infections; Humans; Male; Middle Aged; Receptors, Urokinase Plasminogen Activator | 2019 |
β-glucan attenuated scopolamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats.
β-glucan (polysaccharide) rich diet has been reported to enhance cognition in humans but the mechanism remained elusive. Keeping this in mind, the present study was designed to investigate the interaction of β-glucan with central cholinergic system. Briefly, in-silico analysis revealed promising interactions of β-glucan with the catalytic residues of acetylcholinesterase (AChE) enzyme. In line with this outcome, the in vitro assay (Ellman's method) also exhibited inhibition of AChE by β-glucan (IC50=0.68±0.08μg/µl). Furthermore, the in vivo study (Morris water maze) showed significant dose dependent reversal of the amnesic effect of scopolamine (2mg/kg i.p.) by β-glucan treatment (5, 25, 50 and 100mg/kg, i.p.). Finally, the hippocampi of aforementioned treated animals also revealed dose dependent inhibition of AChE enzyme. Hence, it can be deduced that β-glucan possesses potential to enhance central cholinergic tone via inhibiting AChE enzyme. In conclusion, the present study provides mechanistic insight to the cognition enhancing potential of β-glucan. Keeping in mind its dietary use and abundance in nature, it can be considered as economic therapeutic option against cognitive ailments associated with decline in cholinergic neurotransmission. Topics: Acetylcholinesterase; Animals; beta-Glucans; Cholinergic Antagonists; Cognitive Dysfunction; Hippocampus; Maze Learning; Molecular Docking Simulation; Motor Activity; Rats; Scopolamine | 2016 |