epidermal-growth-factor has been researched along with Pneumonia* in 8 studies
1 review(s) available for epidermal-growth-factor and Pneumonia
Article | Year |
---|---|
Cytokines and production of surfactant components.
The production of pulmonary surfactant, a complex of lipids and proteins that reduces surface tension at the alveolar air-liquid interface, is developmentally regulated. Several hormones, most notably glucocorticoids, are known to accelerate maturation of the surfactant system. Cytokines are polypeptides that act mostly in a paracrine fashion and possess a wide spectrum of activities on multiple types of cells. Many cytokines are produced by different lung cells a various stages of fetal development or under pathological conditions affecting the fetus. In addition, cytokines present in amniotic fluid or in the blood stream may reach the fetal lungs. Some cytokines, including epidermal growth factor, transforming growth factor-alpha, and interferon-gamma have been shown to stimulate the production of surfactant components. On the other hand, tumor necrosis factor and transforming growth factor-beta downregulate the production of surfactant lipids and proteins. We have recently shown that the proinflammatory cytokine interleukin-1 (IL-I) enhances the expression of surfactant protein A (SP-A) in fetal rabbit lung explants. In addition, injection of IL-I into the amniotic fluid of fetal rabbits enhances the expression of surfactant proteins and improves the lung compliance of preterm animals. Preterm delivery is often associated with subclinical intraamniotic infection. In these cases, amniotic fluid concentrations of IL-I are often elevated. We propose that this cytokine accelerates maturation of the surfactant system in fetal lungs and thus prepares the fetus for extrauterine life. Topics: Animals; Cell Differentiation; Cytokines; Embryonic and Fetal Development; Epidermal Growth Factor; Humans; Pneumonia; Pulmonary Surfactants; Transforming Growth Factor alpha; Transforming Growth Factor beta | 1996 |
7 other study(ies) available for epidermal-growth-factor and Pneumonia
Article | Year |
---|---|
Autosomal dominant hyper IgE syndrome from a single centre in Chongqing, China (2009-2018).
Autosomal dominant hyper IgE syndrome (AD-HIES) caused by STAT3 gene mutation is a rare primary immunodeficiency disease. To better understand the disease, we described the clinical characteristics of 20 AD-HIES patients in Chongqing, China and explored the effect of mutations in different domains of STAT3 gene on the function of STAT3 protein by Western blot and confocal microscopy. The mean age at onset was 0.12 years. The mean age at diagnosis was 5.31 years. The most common presentation was eczema, pneumonia, skin abscesses and chronic mucocutaneous candidiasis. Seven patients suffered from BCG complications. R382W/Q were identified in 12 patients, V637M mutation in three patients. Three patients have died. The phosphorylated STAT3 was expressed more in wild-type(WT) and R382W mutant STAT3 in the cytoplasm of COS7 cells with epidermal growth factor(EGF) stimulation, less in the V637M mutation and T620S mutation. Dynamic observation showed that STAT3 cytoplasmic accumulation and nuclear translocation occurred rapidly after EGF stimulation in WT-STAT3-GFP, the time of accumulation and nuclear translocation was later and the expression was less in R382W-STAT3-GFP compared with WT-STAT3-GFP, followed by V637M and T620S mutation. These results suggested that our patients had earlier onset, diagnostic age and higher rate of BCG complications. However, our patients had higher incidence of mortality though the earlier diagnostic age. We did not find a significant genotype/phenotype correlation, but Src homology 2 domain mutations (V637M and T620S) had a greater effect on STAT3 phosphorylation and nuclear translocation than DNA-binding domain mutation (R382W) in vitro. Topics: Candidiasis, Cutaneous; Child; Child, Preschool; China; DNA Mutational Analysis; Eczema; Epidermal Growth Factor; Genetic Association Studies; Genotype; Humans; Immunoglobulin E; Infant; Job Syndrome; Male; Mutation; Pneumonia; STAT3 Transcription Factor; Survival Analysis | 2020 |
Diagnosis and Prognosis of Sepsis Based on Use of Cytokines, Chemokines, and Growth Factors.
The focus of sepsis has shifted from inflammation to organ dysfunction on the basis of a recent definition based on the sequential organ failure score (SOFA). A diagnostic and prognostic marker is necessary under this definition but is currently unknown. We enrolled 80 sepsis patients consecutively admitted to an intensive care unit through the emergency department and 80 healthy control patients who received routine health check-ups from August 2018 to January 2019. SEPSIS-3 criteria were used for the diagnosis of patients based on SOFA score ≥ 2 from the baseline along with evidence of infection. Concentrations of 28 cytokines, eight chemokines, and nine growth factors were measured on the day of diagnosis. Hierarchical cluster analysis was performed for molecules. The majority of infections were pneumonia (45% of patients) and urinary tract infections (40% of patients). Most of the measured molecules were increased in patients with sepsis. Area under receiver operating characteristic curve (AUROC) values were found to be as follows: hepatic growth factor (HGF), 0.899; interleukin-1 receptor antagonist (IL-1RA), 0.893; C-C motif ligand 5 (CCL5) 5, 0.887; C-X-C motif chemokine 10 (CXCL10), 0.851; CCL2, 0.840; and IL-6, 0.830. IL-1RA, IL-6, IL-8, IL-15, and CCL11 concentrations correlated with SOFA score with statistical significance. Prognosis multivariate analysis revealed an odds ratio of 0.968 for epidermal growth factor (EGF). Three clusters were formed, of which Clusters 2 and 3 were associated with nonsurvivors. Diagnosis of sepsis was performed using cytokines, chemokines, and growth factors. HGF revealed the highest diagnostic capability, and EGF predicted favorable prognosis among the tested molecules. Topics: Adult; Aged; Aged, 80 and over; Area Under Curve; Biomarkers; Case-Control Studies; Cytokines; Epidermal Growth Factor; Female; Hepatocyte Growth Factor; Humans; Intensive Care Units; Male; Middle Aged; Odds Ratio; Organ Dysfunction Scores; Pneumonia; Prognosis; Retrospective Studies; ROC Curve; Sepsis; Survival Analysis; Urinary Tract Infections | 2019 |
Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity.
Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-β, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS. Topics: Adult; Aged; Aged, 80 and over; Coronavirus Infections; Cytokines; Epidermal Growth Factor; Female; Humans; Kinetics; Leukocytosis; Lymphopenia; Male; Middle Aged; Middle East Respiratory Syndrome Coronavirus; Pneumonia; Severity of Illness Index; Thrombocytopenia; Viral Load; Virus Shedding | 2016 |
Effects of chronic exposure to Aspergillus fumigatus on epidermal growth factor receptor expression in the airway epithelial cells of asthmatic rats.
Epidemiologic studies suggest that increased concentrations of airborne spores of Aspergillus fumigatus closely relate to asthma aggravation. Chronic exposure to A. fumigatus aggravates airway inflammation, remodeling, and airway hyperresponsiveness in asthmatic rats. The effects of chronic exposure to A. fumigatus on epidermal growth factor receptor (EGFR) expression in the airway epithelial cells of asthmatic rats remain unclear. This study aimed to investigate the effects of chronic exposure to A. fumigatus on injury and shedding of airway epithelium, goblet cell metaplasia, and EGFR expression in the airway epithelial cells of asthmatic rats. A rat model of chronic asthma was established using ovalbumin (OVA) sensitization and challenge. Rats with chronic asthma were then exposed to long-term inhalation of spores of A. fumigatus, and the dynamic changes in injury and shedding of airway epithelium, goblet cell metaplasia, and EGFR expression were observed and analyzed. Chronic exposure to A. fumigatus could aggravate airway epithelial cell damage, upregulate the expression of EGFR and its ligands EGF and TGF-α, promote goblet cell metaplasia, and increase airway responsiveness in rats with asthma. Chronic exposure to A. fumigatus upregulates the expression of EGFR and its ligands in asthmatic rats. The EGFR pathway may play a role in asthma aggravation induced by exposure to A. fumigatus. Topics: Animals; Aspergillosis; Aspergillus fumigatus; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Epidermal Growth Factor; Epithelial Cells; ErbB Receptors; Goblet Cells; Male; Metaplasia; Ovalbumin; Pneumonia; Rats; Rats, Wistar | 2014 |
Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.
Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine. Topics: Animals; Apoptosis; Disease Models, Animal; Epidermal Growth Factor; Intestinal Diseases; Intestines; Mice; Mice, Transgenic; Peroxidase; Pneumonia; Pseudomonas aeruginosa | 2011 |
Src kinase-mediated phosphorylation stabilizes inducible nitric-oxide synthase in normal cells and cancer cells.
Src kinases are key regulators of cellular proliferation, survival, motility, and invasiveness. They play important roles in the regulation of inflammation and cancer. Overexpression or hyperactivity of c-Src has been implicated in the development of various types of cancer, including lung cancer. Src inhibition is currently being investigated as a potential therapy for non-small cell lung cancer in Phase I and II clinical trials. The mechanisms of Src implication in cancer and inflammation are linked to the ability of activated Src to phosphorylate multiple downstream targets that mediate its cellular effector functions. In this study, we reveal that inducible nitric-oxide synthase (iNOS), an enzyme also implicated in cancer and inflammation, is a downstream mediator of activated Src. We elucidate the molecular mechanisms of the association between Src and iNOS in models of inflammation induced by lipopolysaccharide and/or cytokines and in cancer cells and tissues. We identify human iNOS residue Tyr(1055) as a target for Src-mediated phosphorylation. These results are shown in normal cells and cancer cells as well as in vivo in mice. Importantly, such posttranslational modification serves to stabilize iNOS half-life. The data also demonstrate interactions and co-localization of iNOS and activated Src under inflammatory conditions and in cancer cells. This study demonstrates that phosphorylation of iNOS by Src plays an important role in the regulation of iNOS and nitric oxide production and hence could account for some Src-related roles in inflammation and cancer. Topics: Animals; Cell Line, Tumor; Disease Models, Animal; Enzyme Activation; Enzyme Stability; Epidermal Growth Factor; Epithelium; Half-Life; Humans; Lung; Mice; Mice, Inbred C57BL; Models, Biological; Neoplasms; Nitric Oxide Synthase Type II; Phosphorylation; Phosphoserine; Pneumonia; Protein Transport; src-Family Kinases | 2010 |
Acute inflammatory injury in the lung precipitated by oxidant stress induces fibroblasts to synthesize and release transforming growth factor-alpha.
Although transforming growth factor-alpha (TGF-alpha) is widely distributed in transformed cells and in some normal cells and much is known about its structure and metabolism, there is little information about its physiological actions. TGF-alpha is not thought to be synthesized by nontransformed fibroblasts, but it is thought to be a mitogen for these and epithelial cells (Derynck, R. (1986) J. Cell. Biochem. 32, 293-304). We report here that fibroblasts obtained from hamsters with oxidant-induced lung injury release TGF-alpha at levels comparable with those reported for transformed cells. In conditioned media, one isoform of 18 kDa was recognized by a monoclonal antibody to mature TGF-alpha; five isoforms ranging from 18 to 42 kDa were recognized in cell lysates. Conditioned media from these fibroblasts stimulated tyrosine phosphorylation of the epidermal growth factor (EGF)/TGF-alpha receptor, competed with radioactive EGF for binding sites on A431 cells, and were mitogenic for mesenchymal and epithelial cells. This mitogenic activity could be almost completely blocked by anti-TGF-alpha. Conditioned media from normal lung fibroblasts exhibited none of these activities. Using normal lung fibroblasts, we found that TGF-alpha synthesis could be induced in vitro with 25 nmol/ml EGF, suggesting that the induction in vivo may have been due, in part, to a stimulation by EGF (or TGF-alpha) released by other cell types such as alveolar macrophages recruited to the injury site. TGF-alpha is, in general, a mitogen for epithelial cells (Derynck, 1986); more specific to acute injury in the lung, it may affect the proliferation (Ryan, R. M., Mineo-Kuhn, M. M., Kromer, C. M., and Finkelstein, J. N. (1994) Am. J. Physiol. 266, L17-L23) and metabolic activities (Whitsett, J. A., Weaver, T. E., Lieberman, M. A., Clark, J. G., and Daugherty, C. (1987) J. Biol. Chem. 262, 7908-7913) of alveolar epithelial type II cells. This is, we believe, the first report of a fibroblast-derived TGF-alpha induced with oxidant injury. If this response was ubiquitously manifested in other tissues, then fibroblast-derived TGF-alpha might be an important determinant of the epithelial and mesenchymal hyperplasia commonly observed in tissue repair. Topics: Acute Disease; Animals; Base Sequence; Cells, Cultured; Cricetinae; Epidermal Growth Factor; Fibroblasts; Lung; Molecular Sequence Data; Oxidative Stress; Pneumonia; RNA, Messenger; Transforming Growth Factor alpha | 1994 |