epidermal-growth-factor has been researched along with Cognitive-Dysfunction* in 2 studies
2 other study(ies) available for epidermal-growth-factor and Cognitive-Dysfunction
Article | Year |
---|---|
Correlation between serum IGF-1 and EGF levels and neuropsychiatric and cognitive in Parkinson's disease patients.
Insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF) exert neuroprotective effects in Parkinson's disease (PD). To date, studies on the relationships between serum IGF-1 and EGF levels and nonmotor symptoms in PD patients have been rare.. A Siemens automatic chemical analyzer was used to determine serum IGF-1 levels, and enzyme-linked immunosorbent assay was used to detect serum EGF levels in 100 healthy controls and 100 PD patients, including those in the early (n = 49) and middle-late (n = 51) stage of the disease. Evaluation of motor symptoms and nonmotor symptoms in PD patients was assessed by the associated scales.. Serum IGF-1 and EGF levels were higher in PD patients than in healthy controls, and serum IGF-1 and EGF levels were higher in early stage PD patients than in middle-late stage PD patients. Serum IGF-1 levels were significantly negatively correlated with anxiety, depression, and cognitive dysfunction; serum EGF levels were significantly negatively correlated with cognitive dysfunction. Combining IGF-1 and EGF in the diagnosis of PD was more valuable than using a single factor in the diagnosis.. This study shows that serum IGF-1 levels were correlated with the nonmotor symptoms of anxiety, depression, and cognitive dysfunction and that EGF levels were correlated with cognitive dysfunction. The combination of IGF-1 and EGF increased the value for a PD diagnosis. This is the first report of the simultaneous detection of IGF-1 and EGF levels to explore the correlation with nonmotor symptoms of PD. Topics: Cognition; Cognitive Dysfunction; Epidermal Growth Factor; Humans; Insulin-Like Growth Factor I; Parkinson Disease | 2023 |
Epidermal growth factor prevents APOE4 and amyloid-beta-induced cognitive and cerebrovascular deficits in female mice.
Cerebrovascular (CV) dysfunction is emerging as a critical component of Alzheimer's disease (AD), including altered CV coverage. Angiogenic growth factors (AGFs) are key for controlling CV coverage, especially during disease pathology. Therefore, evaluating the effects of AGFs in vivo can provide important information on the role of CV coverage in AD. We recently demonstrated that epidermal growth factor (EGF) prevents amyloid-beta (Aβ)-induced damage to brain endothelial cells in vitro. Here, our goal was to assess the protective effects of EGF on cognition, CV coverage and Aβ levels using an AD-Tg model that incorporates CV relevant AD risk factors. APOE4 is the greatest genetic risk factor for sporadic AD especially in women and is associated with CV dysfunction. EFAD mice express human APOE3 (E3FAD) or APOE4 (E4FAD), overproduce human Aβ42 and are a well characterized model of APOE pathology. Thus, initially the role of APOE and sex in cognitive and CV dysfunction was assessed in EFAD mice in order to identify a group for EGF treatment. At 8 months E4FAD female mice were cognitively impaired, had low CV coverage, high microbleeds and low plasma EGF levels. Therefore, E4FAD female mice were selected for an EGF prevention paradigm (300 μg/kg/wk, 6 to 8.5 months). EGF prevented cognitive decline and was associated with lower microbleeds and higher CV coverage, but not changes in Aβ levels. Collectively, these data suggest that EGF can prevent Aβ-induced damage to the CV. Developing therapeutic strategies based on AGFs may be particularly efficacious for APOE4-induced AD risk. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Apolipoprotein E3; Apolipoprotein E4; Brain; Capillary Permeability; Cerebrovascular Disorders; Cognitive Dysfunction; Disease Models, Animal; Epidermal Growth Factor; Female; Humans; Male; Mice, Transgenic; Neuroprotective Agents; Nootropic Agents; Peptide Fragments; Plaque, Amyloid; Sex Characteristics | 2016 |