epidermal-growth-factor has been researched along with Brain-Infarction* in 3 studies
3 other study(ies) available for epidermal-growth-factor and Brain-Infarction
Article | Year |
---|---|
Forebrain specific heparin-binding epidermal growth factor-like growth factor knockout mice show exacerbated ischemia and reperfusion injury.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a hypoxia-inducible neuroprotective protein that also stimulates proliferation of neuronal precursor cells. In this study, we investigated the possible role of HB-EGF in ischemia and reperfusion injury by measuring the changes in its mRNA expression following focal cerebral ischemia. We also examined neural damage after a middle cerebral artery occlusion (MCAO) and reperfusion in ventral forebrain specific HB-EGF knockout (KO) mice. The levels of HB-EGF mRNA in the cerebral cortex of wild-type (WT) mice were significantly increased 3-24 h after MCAO and reperfusion. Cerebral infraction in HB-EGF KO mice was aggravated at 1 day and 6 days after MCAO and reperfusion compared with WT mice. The number of terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) and an oxidative stress marker, 8-hydroxy-2'-deoxyguanosine (8-OHdG) positive cells, were higher in HB-EGF KO mice than in WT mice. On the other hand, fewer bromodeoxyuridine (BrdU) positive cells were found in the subventricular zone in HB-EGF KO mice compared with WT mice. These results indicate that HB-EGF may play a pivotal role in ischemia and reperfusion injury and that endogenously synthesized HB-EGF is necessary for both the neuroprotective effect and for regulation of cell proliferation in the subventricular zone. Topics: 8-Hydroxy-2'-Deoxyguanosine; Adult Stem Cells; Analysis of Variance; Animals; Brain Infarction; Bromodeoxyuridine; Cerebral Ventricles; Deoxyguanosine; Disease Models, Animal; Epidermal Growth Factor; Gene Expression Regulation; Heparin-binding EGF-like Growth Factor; In Situ Nick-End Labeling; Infarction, Middle Cerebral Artery; Intercellular Signaling Peptides and Proteins; Mice; Mice, Knockout; Prosencephalon; Reperfusion Injury; RNA, Messenger; Transforming Growth Factor alpha | 2011 |
Glial growth factor 2 promotes functional recovery with treatment initiated up to 7 days after permanent focal ischemic stroke.
Neuregulins are a family of growth factors essential for normal cardiac and nervous system development. The EGF-like domain of neuregulins contains the active site which binds and activates signaling cascades through ErbB receptors. A neuregulin-1 gene EGF-like fragment demonstrated neuroprotection in the transient middle cerebral artery occlusion (MCAO) stroke model and drastically reduced infarct volume (Xu et al., 2004). Here we use a permanent MCAO rat model to initially compare two products of the neuregulin-1 gene and also assess levels of recovery with acute versus delayed time to treatment. In the initial study full-length glial growth factor 2 (GGF2) and an EGF-like domain fragment were compared with acute intravenous delivery. In a second study GGF2 only was delivered starting at 24h, 3 days or 7 days after permanent ischemia was induced. In both studies daily intravenous administration continued for 10 days. Recovery of neurological function was assessed using limb placing and body swing tests. GGF2 had similar functional improvements compared to the EGF-like domain fragment at equimolar doses, and a higher dose of GGF2 demonstrated more robust functional improvements compared to a lower dose. GGF2 improved sensorimotor recovery with all treatment paradigms, even enhancing recovery of function with a delay of 7 days to treatment. Histological assessments did not show any associated reduction in infarct volume at either 48 h or 21 days post-ischemic event. Neurorestorative effects of this kind are of great potential clinical importance, given the difficulty of delivering neuroprotective therapies within a short time after an ischemic event in human patients. If confirmed by additional work including additional data on mechanism(s) of improved outcome with verification in other stroke models, one can make a compelling case to bring GGF2 to clinical trials as a neurorestorative approach to improving outcome following stroke injury. Topics: Animals; Brain; Brain Infarction; Epidermal Growth Factor; Humans; Ischemic Attack, Transient; Male; Neuregulin-1; Neuroprotective Agents; Protein Structure, Tertiary; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Stroke; Time Factors | 2010 |
Influence of EGF/bFGF treatment on proliferation, early neurogenesis and infarct volume after transient focal ischemia.
The persistence of neurogenesis in the adult mammalian forebrain suggests that endogenous precursors may be a potential source for neuronal replacement after injury or neurodegeneration. On the other hand basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) can facilitate neural precursor proliferation in the adult rodent subventricular zone (SVZ) and dentate gyrus. As the application of EGF and bFGF was found to boost neurogenesis after global ischemia, in this study we investigated whether a combined intracerebroventricular (i.c.v.) EGF/bFGF treatment over a period of 2 weeks affects the proliferation of newly generated cells in the endothelin-1 model of transient focal ischemia in adult male Sprague-Dawley rats as well. As assessed by toluidine blue staining, EGF/bFGF substantially increased the infarct volume in ischemic animals. Chronic 5'-bromodeoxyuridine (BrdU) i.c.v. application revealed an EGF/bFGF-induced increase in cell proliferation in the lateral ventricle 14 days after surgery. Proliferation in the striatum increased after ischemia, whereas in the dentate gyrus and in the dorsal 3rd ventricle the number of cells decreased. Analysis of the neuronal fate of these cells by co-staining with a doublecortin (DCX) antibody showed that the growth factors concomitantly nearly doubled early neurogenesis in the ipsilateral striatum in ischemic animals but diminished it in the dentate gyrus. Because of the increased infarct volume and unclear long-term outcome further modifications of a chronic treatment schedule are needed before final conclusions concerning the perspectives of such an approach can be made. Topics: Analysis of Variance; Animals; Brain Infarction; Bromodeoxyuridine; Cell Count; Cell Proliferation; Disease Models, Animal; Doublecortin Domain Proteins; Doublecortin Protein; Drug Interactions; Endothelin-1; Epidermal Growth Factor; Fibroblast Growth Factor 2; Functional Laterality; Immunohistochemistry; Infarction, Middle Cerebral Artery; Ischemic Attack, Transient; Male; Microtubule-Associated Proteins; Neuropeptides; Rats; Rats, Sprague-Dawley | 2005 |