entacapone and Chemical-and-Drug-Induced-Liver-Injury

entacapone has been researched along with Chemical-and-Drug-Induced-Liver-Injury* in 15 studies

Reviews

2 review(s) available for entacapone and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016
Hepatotoxic profile of catechol-O-methyltransferase inhibitors in Parkinson's disease.
    Expert opinion on drug safety, 2003, Volume: 2, Issue:3

    Entacapone and tolcapone are selective catechol-O-methyltransferase (COMT) inhibitors developed recently as adjuncts to levodopa for the treatment of Parkinson's disease (PD). They extend the duration of action of levodopa. As a result, they increase 'on' time, decrease 'off' time and improve motor scores in patients with motor fluctuations. Both benefits and main side effects are related to increased dopaminergic activity. This paper reviews the use of those COMT inhibitors in PD with particular focus on the issue of hepatotoxicity. Neither tolcapone nor entacapone caused hepatotoxicity in preclinical studies. However, in 1998, four patients who were using tolcapone presented with serious liver dysfunction; three of them died due to acute liver failure. Tolcapone is now known to have the potential to cause hepatotoxicity in clinical use and experimental studies. It is now recommended that tolcapone be administered only in patients with motor fluctuations who are no longer satisfactorily treated with other medications for PD. Routine liver monitoring is now mandatory with this agent. Entacapone has been described as a well-tolerated and safe drug in recent experimental studies, human clinical trials and postmarketing surveillance. It can be offered to any patient with motor fluctuations and routine liver monitoring is not required.

    Topics: Antiparkinson Agents; Benzophenones; Catechol O-Methyltransferase Inhibitors; Catechols; Chemical and Drug Induced Liver Injury; Chemical and Drug Induced Liver Injury, Chronic; Enzyme Inhibitors; Humans; Levodopa; Nitriles; Nitrophenols; Parkinson Disease; Tolcapone

2003

Other Studies

13 other study(ies) available for entacapone and Chemical-and-Drug-Induced-Liver-Injury

ArticleYear
Editor's Highlight: An Impaired Immune Tolerance Animal Model Distinguishes the Potential of Troglitazone/Pioglitazone and Tolcapone/Entacapone to Cause IDILI.
    Toxicological sciences : an official journal of the Society of Toxicology, 2018, 02-01, Volume: 161, Issue:2

    We have developed an animal model of amodiaquine-induced liver injury that has characteristics very similar to idiosyncratic drug-induced liver injury (IDILI) in humans by impairing immune tolerance using a PD1-/- mouse and cotreatment with anti-CTLA-4. In order to test the usefulness of this model as a general model for human IDILI risk, pairs of drugs with similar structures were tested, one of which is associated with a relatively high risk of IDILI and the other not. One such pair is troglitazone and pioglitazone; troglitazone has caused fatal cases of IDILI while pioglitazone is quite safe. Another pair is tolcapone and entacapone; tolcapone can cause serious IDILI; in contrast, although entacapone has been reported to cause liver injury, it is relatively safe. PD1-/- mice treated with anti-CTLA-4 and troglitazone or tolcapone displayed liver injury as determined by ALT levels and histology, while pioglitazone and entacapone showed less signs of liver injury. One possible mechanism by which drugs could induce an immune response leading to IDILI is by causing the release of danger-associated molecular pattern molecules that activate inflammasomes. We found that the supernatants from incubations of troglitazone, tolcapone, or entacapone with hepatocytes were also able to activate inflammasomes in macrophages, while the supernatant from pioglitazone incubations did not. These results are consistent with an immune mechanism for troglitazone- and tolcapone-induced IDILI and add to the evidence that this may be a general model for IDILI.

    Topics: Animals; Antibodies, Monoclonal; Catechols; Cell Line; Chemical and Drug Induced Liver Injury; CTLA-4 Antigen; Disease Models, Animal; Female; Hepatocytes; Humans; Immune Tolerance; Inflammasomes; Macrophages; Mice, Inbred C57BL; Mice, Knockout; Nitriles; Pioglitazone; Programmed Cell Death 1 Receptor; Severity of Illness Index; Tolcapone; Troglitazone

2018
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    The bile salt export pump (BSEP) is expressed at the canalicular domain of hepatocytes, where it serves as the primary route of elimination for monovalent bile acids (BAs) into the bile canaliculi. The most compelling evidence linking dysfunction in BA transport with liver injury in humans is found with carriers of mutations that render BSEP nonfunctional. Based on mounting evidence, there appears to be a strong association between drug-induced BSEP interference and liver injury in humans; however, causality has not been established. For this reason, drug-induced BSEP interference is best considered a susceptibility factor for liver injury as other host- or drug-related properties may contribute to the development of hepatotoxicity. To better understand the association between BSEP interference and liver injury in humans, over 600 marketed or withdrawn drugs were evaluated in BSEP expressing membrane vesicles. The example of a compound that failed during phase 1 human trials is also described, AMG 009. AMG 009 showed evidence of liver injury in humans that was not predicted by preclinical safety studies, and BSEP inhibition was implicated. For 109 of the drugs with some effect on in vitro BSEP function, clinical use, associations with hepatotoxicity, pharmacokinetic data, and other information were annotated. A steady state concentration (C(ss)) for each of these annotated drugs was estimated, and a ratio between this value and measured IC₅₀ potency values were calculated in an attempt to relate exposure to in vitro potencies. When factoring for exposure, 95% of the annotated compounds with a C(ss)/BSEP IC₅₀ ratio ≥ 0.1 were associated with some form of liver injury. We then investigated the relationship between clinical evidence of liver injury and effects to multidrug resistance-associated proteins (MRPs) believed to play a role in BA homeostasis. The effect of 600+ drugs on MRP2, MRP3, and MRP4 function was also evaluated in membrane vesicle assays. Drugs with a C(ss)/BSEP IC₅₀ ratio ≥ 0.1 and a C(ss)/MRP IC₅₀ ratio ≥ 0.1 had almost a 100% correlation with some evidence of liver injury in humans. These data suggest that integration of exposure data, and knowledge of an effect to not only BSEP but also one or more of the MRPs, is a useful tool for informing the potential for liver injury due to altered BA transport.

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
The liver toxicity biomarker study phase I: markers for the effects of tolcapone or entacapone.
    Toxicologic pathology, 2012, Volume: 40, Issue:6

    The Liver Toxicity Biomarker Study is a systems toxicology approach to discover biomarkers that are indicative of a drug's potential to cause human idiosyncratic drug-induced liver injury. In phase I, the molecular effects in rat liver and blood plasma induced by tolcapone (a "toxic" drug) were compared with the molecular effects in the same tissues by dosing with entacapone (a "clean" drug, similar to tolcapone in chemical structure and primary pharmacological mechanism). Two durations of drug exposure, 3 and 28 days, were employed. Comprehensive molecular analysis of rat liver and plasma samples yielded marker analytes for various drug-vehicle or drug-drug comparisons. An important finding was that the marker analytes associated with tolcapone only partially overlapped with marker analytes associated with entacapone, despite the fact that both drugs have similar chemical structures and the same primary pharmacological mechanism of action. This result indicates that the molecular analyses employed in the study are detecting substantial "off-target" markers for the two drugs. An additional interesting finding was the modest overlap of the marker data sets for 3-day exposure and 28-day exposure, indicating that the molecular changes in liver and plasma caused by short- and long-term drug treatments do not share common characteristics.

    Topics: Animals; Benzophenones; Biomarkers; Blood Proteins; Catechols; Chemical and Drug Induced Liver Injury; Female; Gene Expression Profiling; Liver; Male; Metabolome; Metabolomics; Nitriles; Nitrophenols; Proteome; Proteomics; Rats; Research Design; Tolcapone; Toxicity Tests, Acute; Toxicity Tests, Chronic

2012
Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).
    PLoS computational biology, 2011, Volume: 7, Issue:12

    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60-70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the "Rule of Three" was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity.

    Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents; Chemical and Drug Induced Liver Injury; Databases, Factual; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Models, Biological; Predictive Value of Tests

2011
Identification and categorization of liver toxicity markers induced by a related pair of drugs.
    International journal of molecular sciences, 2011, Volume: 12, Issue:7

    Drug-induced liver injury (DILI) is the primary adverse event that results in the withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in the pre-clinical or clinical phases of drug development. This paper presents an approach for identifying potential liver toxicity genomic biomarkers from a liver toxicity biomarker study involving the paired compounds entacapone ("non-liver toxic drug") and tolcapone ("hepatotoxic drug"). Molecular analysis of the rat liver and plasma samples, combined with statistical analysis, revealed many similarities and differences between the in vivo biochemical effects of the two drugs. Six hundred and ninety-five genes and 61 pathways were selected based on the classification scheme. Of the 61 pathways, 5 were specific to treatment with tolcapone. Two of the 12 animals in the tolcapone group were found to have high ALT, AST, or TBIL levels. The gene Vars2 (valyl-tRNA synthetase 2) was identified in both animals and the pathway to which it belongs, the aminoacyl-tRNA biosynthesis pathway, was one of the three most significant tolcapone-specific pathways identified.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Benzophenones; Bilirubin; Biomarkers; Catechols; Chemical and Drug Induced Liver Injury; Gene Regulatory Networks; Liver; Male; Nitriles; Nitrophenols; Rats; RNA, Transfer, Amino Acyl; Tolcapone

2011
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Drug-induced liver injury is one of the main causes of drug attrition. The ability to predict the liver effects of drug candidates from their chemical structures is critical to help guide experimental drug discovery projects toward safer medicines. In this study, we have compiled a data set of 951 compounds reported to produce a wide range of effects in the liver in different species, comprising humans, rodents, and nonrodents. The liver effects for this data set were obtained as assertional metadata, generated from MEDLINE abstracts using a unique combination of lexical and linguistic methods and ontological rules. We have analyzed this data set using conventional cheminformatics approaches and addressed several questions pertaining to cross-species concordance of liver effects, chemical determinants of liver effects in humans, and the prediction of whether a given compound is likely to cause a liver effect in humans. We found that the concordance of liver effects was relatively low (ca. 39-44%) between different species, raising the possibility that species specificity could depend on specific features of chemical structure. Compounds were clustered by their chemical similarity, and similar compounds were examined for the expected similarity of their species-dependent liver effect profiles. In most cases, similar profiles were observed for members of the same cluster, but some compounds appeared as outliers. The outliers were the subject of focused assertion regeneration from MEDLINE as well as other data sources. In some cases, additional biological assertions were identified, which were in line with expectations based on compounds' chemical similarities. The assertions were further converted to binary annotations of underlying chemicals (i.e., liver effect vs no liver effect), and binary quantitative structure-activity relationship (QSAR) models were generated to predict whether a compound would be expected to produce liver effects in humans. Despite the apparent heterogeneity of data, models have shown good predictive power assessed by external 5-fold cross-validation procedures. The external predictive power of binary QSAR models was further confirmed by their application to compounds that were retrieved or studied after the model was developed. To the best of our knowledge, this is the first study for chemical toxicity prediction that applied QSAR modeling and other cheminformatics techniques to observational data generated by the means of automate

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Drug-induced liver injury is a major issue of concern and has led to the withdrawal of a significant number of marketed drugs. An understanding of structure-activity relationships (SARs) of chemicals can make a significant contribution to the identification of potential toxic effects early in the drug development process and aid in avoiding such problems. This process can be supported by the use of existing toxicity data and mechanistic understanding of the biological processes for related compounds. In the published literature, this information is often spread across diverse sources and can be varied and unstructured in quality and content. The current work has explored whether it is feasible to collect and use such data for the development of new SARs for the hepatotoxicity endpoint and expand upon the limited information currently available in this area. Reviews of hepatotoxicity data were used to build a structure-searchable database, which was analyzed to identify chemical classes associated with an adverse effect on the liver. Searches of the published literature were then undertaken to identify additional supporting evidence, and the resulting information was incorporated into the database. This collated information was evaluated and used to determine the scope of the SARs for each class identified. Data for over 1266 chemicals were collected, and SARs for 38 classes were developed. The SARs have been implemented as structural alerts using Derek for Windows (DfW), a knowledge-based expert system, to allow clearly supported and transparent predictions. An evaluation exercise performed using a customized DfW version 10 knowledge base demonstrated an overall concordance of 56% and specificity and sensitivity values of 73% and 46%, respectively. The approach taken demonstrates that SARs for complex endpoints can be derived from the published data for use in the in silico toxicity assessment of new compounds.

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Drug-induced liver injury (DILI) is one of the most important reasons for drug development failure at both preapproval and postapproval stages. There has been increased interest in developing predictive in vivo, in vitro, and in silico models to identify compounds that cause idiosyncratic hepatotoxicity. In the current study, we applied machine learning, a Bayesian modeling method with extended connectivity fingerprints and other interpretable descriptors. The model that was developed and internally validated (using a training set of 295 compounds) was then applied to a large test set relative to the training set (237 compounds) for external validation. The resulting concordance of 60%, sensitivity of 56%, and specificity of 67% were comparable to results for internal validation. The Bayesian model with extended connectivity functional class fingerprints of maximum diameter 6 (ECFC_6) and interpretable descriptors suggested several substructures that are chemically reactive and may also be important for DILI-causing compounds, e.g., ketones, diols, and α-methyl styrene type structures. Using Smiles Arbitrary Target Specification (SMARTS) filters published by several pharmaceutical companies, we evaluated whether such reactive substructures could be readily detected by any of the published filters. It was apparent that the most stringent filters used in this study, such as the Abbott alerts, which captures thiol traps and other compounds, may be of use in identifying DILI-causing compounds (sensitivity 67%). A significant outcome of the present study is that we provide predictions for many compounds that cause DILI by using the knowledge we have available from previous studies. These computational models may represent cost-effective selection criteria before in vitro or in vivo experimental studies.

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 113, Issue:1

    Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.

    Topics: Animals; Antiparkinson Agents; Benzophenones; Catechol O-Methyltransferase; Catechol O-Methyltransferase Inhibitors; Catechols; Chemical and Drug Induced Liver Injury; Computer-Aided Design; Electron Transport; Enzyme Inhibitors; Fatty Acids; Hep G2 Cells; Humans; Liver; Mass Spectrometry; Microsomes, Liver; Mitochondria, Liver; Mitochondrial Proteins; Models, Molecular; Molecular Structure; Nitriles; Nitrophenols; Oxidation-Reduction; Oxidative Phosphorylation; Peroxisomes; Rats; Reproducibility of Results; Tolcapone; Toxicity Tests

2010
The liver toxicity biomarker study: phase I design and preliminary results.
    Toxicologic pathology, 2009, Volume: 37, Issue:1

    Drug-induced liver injury (DILI) is the primary adverse event that results in withdrawal of drugs from the market and a frequent reason for the failure of drug candidates in development. The Liver Toxicity Biomarker Study (LTBS) is an innovative approach to investigate DILI because it compares molecular events produced in vivo by compound pairs that (a) are similar in structure and mechanism of action, (b) are associated with few or no signs of liver toxicity in preclinical studies, and (c) show marked differences in hepatotoxic potential. The LTBS is a collaborative preclinical research effort in molecular systems toxicology between the National Center for Toxicological Research and BG Medicine, Inc., and is supported by seven pharmaceutical companies and three technology providers. In phase I of the LTBS, entacapone and tolcapone were studied in rats to provide results and information that will form the foundation for the design and implementation of phase II. Molecular analysis of the rat liver and plasma samples combined with statistical analyses of the resulting datasets yielded marker analytes, illustrating the value of the broad-spectrum, molecular systems analysis approach to studying pharmacological or toxicological effects.

    Topics: Animals; Antiparkinson Agents; Benzophenones; Biomarkers; Catechols; Chemical and Drug Induced Liver Injury; Dose-Response Relationship, Drug; Female; Gene Expression; Liver; Male; Metabolomics; Nitriles; Nitrophenols; Oligonucleotide Array Sequence Analysis; Proteomics; Rats; Rats, Sprague-Dawley; Tolcapone

2009
Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism.
    Neurology, 2005, Dec-13, Volume: 65, Issue:11

    The authors report two cases of catechol-O-methyltransferase (COMT) inhibitor-induced asymptomatic hepatic dysfunction in women with Parkinson disease. The patients were genotyped for the UDP-glucuronosyltransferase (UGT) 1A9 gene (which encodes the main COMT inhibitor-metabolizing enzyme), and found to carry mutations leading to defective glucuronidation activity. This suggests that UGT1A9 poor metabolizer genotype(s) may be a predisposing factor for COMT inhibitor-induced hepatotoxicity.

    Topics: Adult; Aged; Antiparkinson Agents; Benzophenones; Catechol O-Methyltransferase; Catechol O-Methyltransferase Inhibitors; Catechols; Chemical and Drug Induced Liver Injury; DNA Mutational Analysis; Enzyme Inhibitors; Female; Genotype; Glucuronates; Glucuronosyltransferase; Humans; Liver; Liver Diseases; Middle Aged; Mutation; Nitriles; Nitrophenols; Parkinson Disease; Polymorphism, Genetic; Tolcapone; UDP-Glucuronosyltransferase 1A9

2005
Assessment of catechol induction and glucuronidation in rat liver microsomes.
    Drug metabolism and disposition: the biological fate of chemicals, 2004, Volume: 32, Issue:12

    Catechols are substances with a 1,2-dihydroxybenzene group from natural or synthetic origin. The aim of this study was to determine whether catechols (4-methylcatechol, 4-nitrocatechol, 2,3-dihydroxynaphthalene) and the antiparkinsonian drugs, entacapone and tolcapone, at doses 150 to 300 mg/kg/day, for 3 days, are able to enhance their own glucuronidation. The induction potency of catechols on rat liver UDP-glucuronosyltransferases (UGTs) was compared with that of a standard polychlorinated biphenyl (PCB) inducer, Aroclor 1254. The glucuronidation rate of these catechols was enhanced up to 15-fold in the liver microsomes of PCB-treated rats, whereas treatment with catechols had little effect. Entacapone, tolcapone, 4-methylcatechol, catechol, 2,3-dihydroxynaphthalene, and 4-nitrocatechol were glucuronidated in control microsomes at rates ranging from 0.12 for entacapone to 22.0 nmol/min/mg for 4-nitrocatechol. Using 1-naphthol, entacapone, and 1-hydroxypyrene as substrates, a 5-, 8-, and 16-fold induction was detected in the PCB rats, respectively, whereas the catechol-induced activities were 1.1- to 1.5-fold only. Entacapone was glucuronidated more efficiently by PCB microsomes than by control microsomes (Vmax/Km, 0.0125 and 0.0016 ml/min/mg protein, respectively). Similar kinetic results were obtained for 1-hydroxypyrene. The Eadie-Hofstee plots suggested the contribution of multiple UGTs for the glucuronidation of 1-hydroxypyrene (Km1, Km2, Km3 = 0.8, 9.7, and 63 microM, and Vmax1, Vmax2, Vmax3 = 11, 24, and 55 nmol/min/mg, respectively), whereas only one UGT could be implicated in the glucuronidation of entacapone (Km = 130 microM, Vmax = 1.6 nmol/min/mg). In conclusion, catechols are poor inducers of their own glucuronidation supported by several UGT isoforms. Their administration is unlikely to affect the glucuronidation of other drugs administered concomitantly.

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Catechols; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Enzyme Inhibitors; Glucuronides; Glucuronosyltransferase; In Vitro Techniques; Isoenzymes; Liver Function Tests; Male; Microsomes, Liver; Naphthols; Nitriles; Polychlorinated Biphenyls; Pyrenes; Rats; Rats, Wistar

2004
Entacapone-induced hepatotoxicity and hepatic dysfunction.
    Movement disorders : official journal of the Movement Disorder Society, 2002, Volume: 17, Issue:6

    We describe 2 patients with Parkinson's disease who developed hepatotoxicity associated with the use of entacapone, a novel, mainly peripheral acting inhibitor of catechol-D-methyltransferase. Hepatotoxicity resolved rapidly with discontinuation of the drug. Analysis of causality in a further case initially linked to entacapone exposure was confounded by conflicting serial adverse reaction reports.

    Topics: Aged; Antiparkinson Agents; Catechol O-Methyltransferase Inhibitors; Catechols; Chemical and Drug Induced Liver Injury; Drug Interactions; Drug Therapy, Combination; Female; Humans; Liver Function Tests; Nitriles; Parkinson Disease

2002