enmd-2076 has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for enmd-2076 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Predictive biomarkers of sensitivity to the aurora and angiogenic kinase inhibitor ENMD-2076 in preclinical breast cancer models.
The Aurora kinases are a family of conserved serine-threonine kinases with key roles in mitotic cell division. As with other promising anticancer targets, patient selection strategies to identify a responsive subtype will likely be required for successful clinical development of Aurora kinase inhibitors. The purpose of this study was to evaluate the antitumor activity of the Aurora and angiogenic kinase inhibitor ENMD-2076 against preclinical models of breast cancer with identification of candidate predictive biomarkers.. Twenty-nine breast cancer cell lines were exposed to ENMD-2076 and the effects on proliferation, apoptosis, and cell-cycle distribution were evaluated. In vitro activity was confirmed in MDA-MB-468 and MDA-MB-231 triple-negative breast cancer xenografts. Systematic gene expression analysis was used to identify up- and downregulated pathways in the sensitive and resistant cell lines, including within the triple-negative breast cancer subset.. ENMD-2076 showed antiproliferative activity against breast cancer cell lines, with more robust activity against cell lines lacking estrogen receptor expression and those without increased HER2 expression. Within the triple-negative breast cancer subset, cell lines with a p53 mutation and increased p53 expression were more sensitive to the cytotoxic and proapoptotic effects of ENMD-2076 exposure than cell lines with decreased p53 expression.. ENMD-2076 exhibited robust anticancer activity against models of triple-negative breast cancer and the candidate predictive biomarkers identified in this study may be useful in selecting patients for Aurora kinase inhibitors in the future. Topics: Animals; Antineoplastic Agents; Apoptosis; Aurora Kinases; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Cellular Senescence; Cluster Analysis; Disease Models, Animal; Drug Resistance, Neoplasm; Female; G2 Phase Cell Cycle Checkpoints; Gene Expression Profiling; Humans; Inhibitory Concentration 50; Mice; Mice, Nude; Mutation; Protein Serine-Threonine Kinases; Pyrazoles; Pyrimidines; Receptor, ErbB-2; Signal Transduction; Tumor Stem Cell Assay; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2013 |