enkephalin--ala(2)-mephe(4)-gly(5)- and Status-Epilepticus

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with Status-Epilepticus* in 2 studies

Other Studies

2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and Status-Epilepticus

ArticleYear
Kainic acid modifies mu-receptor binding in young, adult, and elderly rat brain.
    Cellular and molecular neurobiology, 2002, Volume: 22, Issue:5-6

    Mu-receptor binding changes were evaluated following the kainic acid (KA)-induced status epilepticus (SE) in young, adult, and elderly animals. Male Wistar rats were used as follows: young rats (15 days old) were treated with KA (7 mg/kg) and sacrificed 72 h (YKA3d) or 35 days (YKA35d) after SE; adult (90 days old) (AKA1d and AKA40d) and elderly rats (1-year-old) (EKA1d and EKA40d) were injected with KA (10 mg/kg) and then sacrificed 24 h or 40 days following SE. Their brains were processed for an autoradiography assay for mu-receptors. The YKA3d group showed increased values in dentate gyrus (39%) and a decrease in substantia nigra (26%); YKA35d animals had a reduction in caudate putamen (29%) and in substantia nigra (20%). The AKA1d group exhibited increased mu-receptors in caudate putamen (49%), cingulate (415%), frontal (52%), and temporal (53%) cortices: substantia nigra (56%), dentate gyrus (48%). and CA2 field of hippocampus (53%). The AKA40d group showed increased values in sensorimotor cortex (45%), anterior (39%), medial (65%), basolateral (202%), and central (32%) amygdaloid nuclei; dentate gyrus (80%) as well as CA2 (80%) and CA3 (49%) fields of hippocampus. The EKA1d group presented decreased mu-receptor binding in piriform (16%) and enthorinal (22%) cortices as well as in anterior amygdala nucleus (17%). The EKA40d group showed reduced values in sensorimotor cortex (14%) and substantia nigra (27%). The present results indicate that the mu-binding changes following SE depend on the rate of brain maturation.

    Topics: Aging; Animals; Animals, Newborn; Binding Sites; Brain; Convulsants; Down-Regulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Epilepsy; Kainic Acid; Male; Neurons; Opioid Peptides; Radioligand Assay; Rats; Rats, Wistar; Receptors, Opioid, mu; Status Epilepticus; Up-Regulation

2002
Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus.
    Neuroscience, 1999, Volume: 89, Issue:1

    In a model of self-sustaining status epilepticus induced in rats by 30 min intermittent stimulation of the perforant path through chronically implanted electrodes, a decrease in dynorphin-like immunoreactivity in the dentate gyrus and CA3 was observed 3 h and 24 h after the induction of status epilepticus. Enkephalin-like immunoreactivity decreased 3 h but not 24 h after perforant path stimulation. Injection into the hilus of the dentate gyrus 10 min prior to stimulation of the kappa-receptor agonist dynorphin-A(1-13), the delta-receptor antagonists ICI-174864 and naltrindole, as well as i.p. injection of naloxone prevented the development of status epilepticus. Perihilar administration of the delta-agonist [D-Ser2]Leu-enkephalin-Thr6 or the kappa-antagonist nor-Binaltorphimine, but not of the mu-agonist [D-Ala2,N-Me-Phe4,Gly-ol5]-Enkephalin, facilitated the establishment of self-sustaining status epilepticus. Injection into the hilus of dynorphin-A(1-13) after the end of perforant path stimulation, stopped established status epilepticus, while administration of naloxone, naltrindole and ICI-174864 were ineffective. We conclude that kappa-opioids in the hippocampus counteract initiation and maintenance of status epilepticus, while delta-opioids promote initiation, but not maintenance of seizure activity. These data are important for the understanding the mechanisms which underlie initiation and maintenance of status epilepticus and for the development of new approaches for its effective management.

    Topics: Action Potentials; Analgesics; Analgesics, Opioid; Animals; Disease Models, Animal; Dynorphins; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Immunohistochemistry; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Opioid Peptides; Peptide Fragments; Perforant Pathway; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Status Epilepticus

1999