enkephalin--ala(2)-mephe(4)-gly(5)- and Hypotension

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with Hypotension* in 2 studies

Other Studies

2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and Hypotension

ArticleYear
Dexamethasone modulates hypotension induced by opioids in anaesthetised rats.
    European journal of pharmacology, 2001, Oct-26, Volume: 430, Issue:1

    The effect of dexamethasone on hypotension induced by mu-, kappa- and delta-opioid receptor agonists was investigated in pentobarbital-anaesthetised rats. Morphine (nonselective opioid receptor agonist), DAGO (D-Ala2-N-methyl-[Phe4-Gly5-ol]enkephalin; mu-opioid receptor-selective agonist), U50-488H (trans(+/-)-3,4-dichloro-N-methyl-N-(2[1pyrrolidynyl]cyclohexyl)-benzeneacetamide; kappa-opioid receptor-selective agonist) and deltorphin II (delta-opioid receptor-selective agonist), given intravenously, 5 micromol/kg, induced hypotension in rats. This hypotension was characterised by a fall in mean arterial blood pressure in 1-2 min that recovered in 30 min for morphine and U50-488H and in 5 or 20 min for DAGO and deltorphin II, respectively. Dexamethasone per se at a dose of 7.5 micromol/kg, i.v. did not significantly modify the mean arterial blood pressure of animals. Dexamethasone administration 90 min, but not 30 or 60 min, before the opioid agonists injection, prevented the hypotension induced by morphine or U50-488H, but not that induced by DAGO or deltorphin II. Pretreatment with RU-38486 (mifepristone; 7.5 micromol/kg, i.v.), a glucocorticoid receptor antagonist, 15 min before the steroid, prevented dexamethasone inhibition of hypotension induced by morphine and U50-488H. Furthermore, pretreatment with cycloheximide, a protein synthesis inhibitor (3.5 micromol/kg, i.v.), was also able to abolish the effects of dexamethasone on morphine- and U50-488H-induced hypotension. Results of the present study indicate that dexamethasone inhibited kappa-opioid receptor-mediated hypotension in rats, indicating a further important functional interaction between corticosteroids and the opioid system at kappa receptors. The ability of cycloheximide and RU-38486 to block dexamethasone effects indicates that steroid interference with kappa-opioid receptor-mediated hypotension involves a protein synthesis-dependent mechanism via glucocorticoid receptors.

    Topics: Animals; Anti-Inflammatory Agents; Blood Pressure; Cycloheximide; Dexamethasone; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Heart Rate; Hypotension; Male; Mifepristone; Morphine; Narcotics; Oligopeptides; Rats; Rats, Wistar; Receptors, Glucocorticoid; Receptors, Opioid, kappa

2001
Cardiovascular effects of microinjections of opioid agonists into the 'Depressor Region' of the ventrolateral periaqueductal gray region.
    Brain research, 1997, Jul-11, Volume: 762, Issue:1-2

    Microinjections of excitatory amino acids made into the ventrolateral midbrain periaqueductal gray of the rat have revealed that neurons in this region integrate a reaction characterised by quiescence, hyporeactivity, hypotension and bradycardia. Microinjections of both excitatory amino acids and opioids into the ventrolateral periaqueductal gray have shown also that it is a key central site mediating analgesia. The effects of injections of opioids into the ventrolateral periaqueductal gray on arterial pressure and heart rate or behaviour are unknown. In this study we first mapped in the rat the extent of the ventrolateral periaqueductal gray hypotensive region as revealed by microinjections of excitatory amino acids. We found that ventrolateral periaqueductal gray depressor region extended more rostrally than previously thought into the tegmentum ventrolateral to the periaqueductal gray. Subsequently we studied for the first time, the effects of microinjections of mu-, delta-, and kappa-opioid agonists made into the ventrolateral periaqueductal grey depressor region. In contrast to the effects of excitatory amino acid injections, microinjections of the mu-opioid agonist ([D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin) evoked hypertension and tachycardia at approximately 50% of sites. Similar to excitatory amino acid injections, microinjections of both the delta-opioid agonist ([D-Pen2,D-Pen5]enkephalin), and the kappa-opioid agonist ((5,7,8)-(+)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-y l]-benzeneacetamide) evoked either a hypotension and bradycardia, or had no effect. These results indicate that different opiate receptor subtypes are present on a distinct population of ventrolateral periaqueductal gray neurons, or at different ventrolateral periaqueductal gray synaptic locations (pre- or post-synaptic).

    Topics: Analgesics; Animals; Benzeneacetamides; Blood Pressure; Bradycardia; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Excitatory Amino Acids; Heart Rate; Homocysteine; Hypertension; Hypotension; Male; Microinjections; Neural Inhibition; Pain; Periaqueductal Gray; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

1997