enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with Breast-Neoplasms* in 2 studies
2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and Breast-Neoplasms
Article | Year |
---|---|
Cinnamides as selective small-molecule inhibitors of a cellular model of breast cancer stem cells.
A high-throughput screen (HTS) was conducted against stably propagated cancer stem cell (CSC)-enriched populations using a library of 300,718 compounds from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR). A cinnamide analog displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control cell line (HMLE_sh_eGFP). Herein, we report structure-activity relationships of this class of cinnamides for selective lethality towards CSC-enriched populations. Topics: Amides; Breast Neoplasms; Cell Line, Tumor; Drug Screening Assays, Antitumor; Female; Humans; Neoplastic Stem Cells; Small Molecule Libraries; Structure-Activity Relationship | 2013 |
The antiproliferative effect of opioid receptor agonists on the T47D human breast cancer cell line, is partially mediated through opioid receptors.
In the present study, we investigated the action of opioid receptor agonists on the proliferation of cells of the T47D human breast cancer cell line, grown in the absence of exogenously added steroids and growth factors. We found that the opioid receptor agonists ethylketocyclazocine, morphine, [D-Ala2,D-Leu5]enkephalin (DADLE), [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) and etorphine inhibit dose dependently cell proliferation. The opioid receptor antagonist diprenorphine had no significant effect per se, but it was able to reverse the action of all opioid receptor agonists except morphine. In order to investigate the mechanism of action of opioids on T47D cells, we characterised the opioid receptors present on this cell line, by saturation binding, using radiolabelled [D-Ala2,N-Me-Phe4-Gly5-ol]enkephalin (DAGO, mu-opioid receptor agonist), ethylketocyclazocine (kappa 1-, kappa 2-, mu- and delta-opioid receptor agonist), diprenorphine (kappa 2-, kappa 3-, delta- and mu-opioid receptor antagonist), DADLE (delta- and mu-opioid receptor agonist), and effectors. We identified opioid binding sites belonging mainly to the kappa-type (kappa 1, kappa 2 and kappa 3), a few delta-opioid receptor sites, but no mu-opioid receptors. Our results indicate that the inhibitory effect of opioids on T47D cell growth is mediated through kappa- and delta-opioid receptors. The effect of mu-acting morphine might not be mediated through opioid receptors. Topics: Adenocarcinoma; Amino Acid Sequence; Binding Sites; Breast Neoplasms; Cell Division; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Ethylketocyclazocine; Etorphine; Humans; Molecular Sequence Data; Morphine; Narcotic Antagonists; Opioid Peptides; Receptors, Opioid; Tumor Cells, Cultured | 1996 |