endothelin-1 has been researched along with Venous-Thrombosis* in 2 studies
2 other study(ies) available for endothelin-1 and Venous-Thrombosis
Article | Year |
---|---|
AGEs/RAGE blockade downregulates Endothenin-1 (ET-1), mitigating Human Umbilical Vein Endothelial Cells (HUVEC) injury in deep vein thrombosis (DVT).
This study is aimed at identifying the roles of AGE/RAGE and ET-1 in deep vein thrombosis (DVT). Advanced glycation end products (AGEs) in glycated human serum albumin (M-HSA) were detected by ELISA. The viability of HUVECs was examined by CCK-8 assay. Flow cytometry was performed to detect cell apoptosis, followed by ELISA for the detection of inflammatory cytokine level and oxidative stress level in HUVECs. Immunofluorescence was performed to detect ET-1 and eNOS expression. The expression of specific proteins was assayed by western blot. As a result, decreased HUVEC viability was observed after stimulation with M-HSA, whereas RAGE inhibitor improved it. Cell apoptosis showed the opposite trend. Additionally, M-HSA-induced inflammatory cytokine release and oxidative stress of HUVECs were both alleviated by RAGE inhibitor. RAGE inhibitor also increased the levels of NO and eNOS while decreasing the level of ET-1 in M-HSA-stimulated HUVECs. Furthermore, decreased protein expression of Bax, cleaved-caspase3, RAGE, p65, ET-1 and iNOS was observed after treatment with RAGE inhibitor, in addition to increased protein expression of Bcl-2 and eNOS. In conclusion, blocking AGE/RAGE pathway downregulates ET-1, thereby mitigating HUVEC damage in DVT. Topics: Antigens, Neoplasm; bcl-2-Associated X Protein; Caspase 3; Cell Survival; Down-Regulation; Endothelin-1; Glycation End Products, Advanced; Glycosylation; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Mitogen-Activated Protein Kinases; Nitric Oxide; Nitric Oxide Synthase Type III; Oxidative Stress; Serum Albumin; Venous Thrombosis | 2021 |
Activated Endothelial TGFβ1 Signaling Promotes Venous Thrombus Nonresolution in Mice Via Endothelin-1: Potential Role for Chronic Thromboembolic Pulmonary Hypertension.
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by defective thrombus resolution, pulmonary artery obstruction, and vasculopathy. TGFβ (transforming growth factor-β) signaling mutations have been implicated in pulmonary arterial hypertension, whereas the role of TGFβ in the pathophysiology of CTEPH is unknown.. To determine whether defective TGFβ signaling in endothelial cells contributes to thrombus nonresolution and fibrosis.. Venous thrombosis was induced by inferior vena cava ligation in mice with genetic deletion of TGFβ1 in platelets (Plt.TGFβ-KO) or TGFβ type II receptors in endothelial cells (End.TGFβRII-KO). Pulmonary endarterectomy specimens from CTEPH patients were analyzed using immunohistochemistry. Primary human and mouse endothelial cells were studied using confocal microscopy, quantitative polymerase chain reaction, and Western blot. Absence of TGFβ1 in platelets did not alter platelet number or function but was associated with faster venous thrombus resolution, whereas endothelial TGFβRII deletion resulted in larger, more fibrotic and higher vascularized venous thrombi. Increased circulating active TGFβ1 levels, endothelial TGFβRI/ALK1 (activin receptor-like kinase), and TGFβRI/ALK5 expression were detected in End.TGFβRII-KO mice, and activated TGFβ signaling was present in vessel-rich areas of CTEPH specimens. CTEPH-endothelial cells and murine endothelial cells lacking TGFβRII simultaneously expressed endothelial and mesenchymal markers and transcription factors regulating endothelial-to-mesenchymal transition, similar to TGFβ1-stimulated endothelial cells. Mechanistically, increased endothelin-1 levels were detected in TGFβRII-KO endothelial cells, murine venous thrombi, or endarterectomy specimens and plasma of CTEPH patients, and endothelin-1 overexpression was prevented by inhibition of ALK5, and to a lesser extent of ALK1. ALK5 inhibition and endothelin receptor antagonization inhibited mesenchymal lineage conversion in TGFβ1-exposed human and murine endothelial cells and improved venous thrombus resolution and pulmonary vaso-occlusions in End.TGFβRII-KO mice.. Endothelial TGFβ1 signaling via type I receptors and endothelin-1 contribute to mesenchymal lineage transition and thrombofibrosis, which were prevented by blocking endothelin receptors. Our findings may have relevant implications for the prevention and management of CTEPH. Topics: Activin Receptors, Type II; Aged; Aged, 80 and over; Animals; Blood Platelets; Endothelin-1; Female; Human Umbilical Vein Endothelial Cells; Humans; Hypertension, Pulmonary; Male; Mice; Mutation; Receptor, Transforming Growth Factor-beta Type I; Receptor, Transforming Growth Factor-beta Type II; Signal Transduction; Transforming Growth Factor beta; Venae Cavae; Venous Thrombosis | 2020 |