endothelin-1 and Scleroderma--Diffuse

endothelin-1 has been researched along with Scleroderma--Diffuse* in 2 studies

Other Studies

2 other study(ies) available for endothelin-1 and Scleroderma--Diffuse

ArticleYear
Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts.
    Journal of cellular physiology, 2011, Volume: 226, Issue:12

    TGF-β is the primary inducer of extracellular matrix proteins in scleroderma (systemic sclerosis, SSc). Previous studies indicate that in a subset of SSc fibroblasts TGF-β signaling is activated via elevated levels of activin receptor-like kinase (ALK) 1 and phosphorylated Smad1 (pSmad1). The goal of this study was to determine the role of endoglin/ALK1 in TGF-β/Smad1 signaling in SSc fibroblasts. In SSc fibroblasts, increased levels of endoglin correlated with high levels of pSmad1, collagen, and connective tissue growth factor (CCN2). Endoglin depletion via siRNA in SSc fibroblasts inhibited pSmad1 but did not affect pSmad2/3. Following endoglin depletion mRNA and protein levels of collagen and CCN2 were significantly decreased in SSc fibroblasts but remained unchanged in normal fibroblasts. ALK1 was expressed at similar levels in SSc and normal fibroblasts. Depletion of ALK1 resulted in inhibition of pSmad1 and a moderate but significant reduction of mRNA and protein levels of collagen and CCN2 in SSc fibroblasts. Furthermore, constitutively high levels of endoglin were found in complexes with ALK1 in SSc fibroblasts. Overexpression of constitutively active ALK1 (caALK1) in normal and SSc fibroblasts led to a moderate increase of collagen and CCN2. However, caALK1 potently induced endothelin 1 (ET-1) mRNA and protein levels in SSc fibroblasts. Additional experiments demonstrated that endoglin and ALK1 mediate TGF-β induction of ET-1 in SSc and normal fibroblasts. In conclusion, this study has revealed an important profibrotic role of endoglin in SSc fibroblasts. The endoglin/ALK1/Smad1 pathway could be a therapeutic target in patients with SSc if appropriately blocked.

    Topics: Activin Receptors, Type II; Antigens, CD; Collagen; Connective Tissue Growth Factor; Endoglin; Endothelin-1; Enzyme Activation; Fibroblasts; Fibrosis; HEK293 Cells; Humans; Mutation; Phenotype; Phosphorylation; Receptors, Cell Surface; RNA Interference; RNA, Messenger; Scleroderma, Diffuse; Signal Transduction; Skin; Smad1 Protein; Smad2 Protein; Smad3 Protein; Transfection; Transforming Growth Factor beta; Up-Regulation

2011
Signaling pathways regulating intercellular adhesion molecule 1 expression by endothelin 1: comparison with interleukin-1beta in normal and scleroderma dermal fibroblasts.
    Arthritis and rheumatism, 2006, Volume: 54, Issue:2

    Endothelin 1 (ET-1) has been implicated in the pathogenesis of fibrotic and inflammatory diseases, including scleroderma. In addition to modulating vascular tone and extracellular matrix turnover, ET-1 up-regulates cell surface adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), which is key to cell-cell and cell-matrix adhesion and leukocyte infiltration. This study was undertaken to delineate the signal transduction pathways utilized by ET-1 and compare them with those adopted by proinflammatory cytokine interleukin-1beta (IL-1beta) in normal and scleroderma dermal fibroblasts.. Protein expression induced by ET-1 and IL-1beta on normal dermal fibroblasts, with or without signaling inhibitors, was detected by enzyme-linked immunosorbent assay, while messenger RNA (mRNA) levels were analyzed by LightCycler polymerase chain reaction. Expression of protein kinase Cdelta (PKCdelta) and PKCepsilon protein in normal dermal fibroblasts and scleroderma dermal fibroblasts was determined by Western blotting, and PKCepsilon involvement in ET-1 signaling was confirmed through transfection of an ICAM-1 promoter construct into murine PKCepsilon-/- fibroblasts. NF-kappaB activation was confirmed via electrophoretic mobility supershift assay, and analysis of the ICAM-1 promoter region was achieved via transfection of deletion constructs into human dermal fibroblasts.. In normal dermal fibroblasts, ET-1 induced ICAM-1 mRNA and surface protein expression in a dose- and time-dependent manner via both receptor subtypes, ET(A) and ET(B); antagonism of both abolished the ET-1 response. MEK was involved in the signaling cascade, but phosphatidylinositol 3-kinase and p38 MAPK were not. Key to the cascade was activation of NF-kappaB, achieved by ligation of either receptor subtype. PKCepsilon activation led to downstream activation of MEK and, in part, NF-kappaB. IL-1beta signaling required NF-kappaB and MEK activation, along with activation of PKCdelta. ET-1 and IL-1beta each utilized the same ICAM-1 promoter region and the same NF-kappaB site at -157 bp. Responses to ET-1 and IL-1beta differed in scleroderma dermal fibroblasts, with ET-1 sensitivity decreasing and IL-1beta responses remaining intact. Expression of PKCepsilon and PKCdelta in scleroderma dermal fibroblasts was also altered.. The findings of this study indicate that differences in sensitivity to ET-1 and IL-1beta in scleroderma dermal fibroblasts may be explained by altered expression of the PKC isoforms and cytokine receptors.

    Topics: Cell Line; Dose-Response Relationship, Drug; Endothelin-1; Fibroblasts; Humans; Intercellular Adhesion Molecule-1; Protein Kinase C-delta; Protein Kinase C-epsilon; RNA, Messenger; Scleroderma, Diffuse; Signal Transduction; Skin; Up-Regulation

2006