endothelin-1 has been researched along with Meningeal-Neoplasms* in 2 studies
1 review(s) available for endothelin-1 and Meningeal-Neoplasms
Article | Year |
---|---|
Meningioma and Bone Hyperostosis: Expression of Bone Stimulating Factors and Review of the Literature.
Several hypotheses have been proposed regarding the mechanisms underlying meningioma-related hyperostosis. In this study, we investigated the role of osteoprotegerin (OPG), insulin-like growth factor 1 (IGF-1), endothelin 1 (ET-1), and bone morphogenetic protein (BMP) 2 and 4.. A total of 149 patients (39 males and 110 females; mean age, 62 years) who underwent surgery were included. Depending on the relationship with the bone, meningiomas were classified as hyperostotic, osteolytic, infiltrative, or unrelated. Expression of OPG, and IGF-1, ET-1, BMP-2, and BMP-4 was evaluated by tissue microarray analysis of surgical samples.. Our series comprised 132 cases of grade I, 14 cases of grade II, and 3 cases of grade III meningiomas, according to the World Health Organization classification. Based on preoperative computed tomography scan, the cases were classified as follows: hyperostotic, n = 11; osteolytic, n = 11; infiltrative, n = 15; unrelated to the bone, n = 108. Four cases were excluded from the statistical analysis. Using receiver operating characteristic curve analysis, we identified a 2% cutoff for the mean value of IGF-1 that discriminated between osteolytic and osteoblastic lesions; cases with a mean IGF-1 expression of <2% were classified as osteolytic (P = 0.0046), whereas those with a mean OPG expression of <10% were classified as osteolytic (P = 0.048). No other significant relationships were found.. Expression of OPG and expression of IGF-1 were found to be associated with the development of hyperostosis. Preliminary findings suggest that hyperostosis can be caused by an overexpression of osteogenic molecules that influence osteoblast/osteoclast activity. Based on our results, further studies on hyperostotic bony tissue in meningiomas are needed to better understand how meningiomas influence bone overproduction. Topics: Biomarkers; Bone Morphogenetic Protein 2; Bone Morphogenetic Proteins; Endothelin-1; Female; Gene Expression; Humans; Hyperostosis; Insulin-Like Growth Factor I; Male; Meningeal Neoplasms; Meningioma; Middle Aged; Osteoprotegerin | 2018 |
1 other study(ies) available for endothelin-1 and Meningeal-Neoplasms
Article | Year |
---|---|
Expression of endothelin 1 and its angiogenic role in meningiomas.
Meningiomas are one of the most frequent central nervous system tumours. Although slow-growing at times, they continue to be a cause of morbidity and mortality. The endothelin (ET) family consists of three isoforms: ET-1 is the most abundant one. ET-1 may be involved in meningioma tumourigenesis in concert with other growth factors, in particular with angiogenic agents. We analysed ET-1 expression by immunohistochemistry and its activating system by reverse-transcription-polymerase chain reaction in 56 cases of meningioma. We found an association between high-grade meningiomas and high ET-1 expression levels (p=0.002). Moreover, we evaluated the potential angiogenic role of ET-1, finding an elevated microvessel count in tumours with high ET expression levels (p=0.004). ET-1 may contribute to meningioma growth by inducing formation of new blood vessels. The finding that ET-1 expression positively correlates with vascular endothelial growth factor (VEGF) expression in meningiomas (p=0.03) also supports the hypothesized modulating effect of ET-1 on angiogenesis. Thus, the influence of the ET system on the progression of meningiomas may occur through stimulation of VEGF. The association of ET-1 and meningioma represents a potential area for therapeutic intervention with selective ET inhibitors. Additional clinical studies will be needed before inhibitors can be incorporated in clinical practice. Topics: Adult; Aged; Endothelin-1; Female; Humans; Immunohistochemistry; Male; Meningeal Neoplasms; Meningioma; Middle Aged; Neovascularization, Physiologic; RNA, Messenger; Vascular Endothelial Growth Factor A | 2006 |