endothelin-1 has been researched along with Acidosis--Renal-Tubular* in 2 studies
2 other study(ies) available for endothelin-1 and Acidosis--Renal-Tubular
Article | Year |
---|---|
Dietary protein induces endothelin-mediated kidney injury through enhanced intrinsic acid production.
Dietary protein as casein (CAS) augments intrinsic acid production, induces endothelin-mediated kidney acidification, and promotes kidney injury. We tested the hypothesis that dietary CAS induces endothelin-mediated kidney injury through augmented intrinsic acid production. Munich-Wistar rats ate minimum electrolyte diets from age 8 to 96 weeks with 50 or 20% protein as either acid-inducing CAS or non-acid-inducing SOY. Urine net acid excretion and distal nephron net HCO3 reabsorption by in vivo microperfusion (Net J(HCO3)) were higher in 50 than 20% CAS but not 50 and 20% SOY. At 96 weeks, 50% compared the 20% CAS had higher urine endothelin-1 excretion (U(ET-1)V) and a higher index of tubulo-interstitial injury (TII) at pathology (2.25+/-0.21 vs 1.25+/-0.13 U, P<0.03), but each parameter was similar in 50 and 20% SOY. CAS (50%) eating NaHCO3 to reduce intrinsic acid production had lower Net J(HCO3), lower U(ET-1)V, and less TII. By contrast, 50% SOY eating dietary acid as (NH4)2SO4 had higher Net J(HCO3), higher U(ET-1)V, and more TII. Endothelin A/B but not A receptor antagonism reduced Net J(HCO3) in 50% CAS and 50% SOY+(NH4)2SO4 animals. By contrast, endothelin A but not A/B receptor antagonism reduced TII in each group. The data support that increased intake of acid-inducing dietary protein induces endothelin B-receptor-mediated increased Net J(HCO3) and endothelin A-receptor-mediated TII through augmented intrinsic acid production. Topics: Acidosis, Renal Tubular; Acids; Animals; Bicarbonates; Body Weight; Bosentan; Caseins; Dietary Proteins; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Endothelin-1; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Male; Phenylpropionates; Pyrimidines; Rats; Rats, Inbred Strains; Receptor, Endothelin A; Receptor, Endothelin B; Sulfonamides | 2007 |
Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats.
We examined if endogenous endothelins mediate the decreased HCO3 secretion and increased H+ secretion in in vivo-perfused distal tubules of rats fed dietary acid as (NH4)2SO4. Animals given (NH4)2SO4 drinking solution had higher endothelin-1 addition to renal interstitial fluid than those given distilled H2O (480+/-51 vs. 293+/-32 fmol g kidney wt(-1) min(-1), respectively, P < 0.03). (NH4)2SO4-ingesting animals infused with bosentan (10 mg/kg) to inhibit A- and B-type endothelin receptors had higher HCO3 secretion than baseline (NH4)2SO4 animals (-4.7+/-0.4 vs. -2.4+/-0.3 pmol mm(-1) min(-1), P < 0.01), but (NH4)2SO4 animals given a specific inhibitor of A-type endothelin receptors (BQ-123) did not (-2.0+/-0.2 pmol mm(-1) min(-1), P = NS vs. baseline). H+ secretion was lower in bosentan-infused compared with baseline (NH4)2SO4 animals (27.7+/-2.5 vs. 43.9+/-4.0 pmol mm(-1) min(-1), P < 0.03), but that for BQ-123-infused (NH4)2SO4 animals was not (42.9+/-4.2 pmol mm(-1) min(-1), P = NS vs. baseline). Bosentan had no effect on distal tubule HCO3 or H+ secretion in control animals. The data show that dietary acid increases endothelin-1 addition to renal interstitial fluid and that inhibition of B- but not A-type endothelin receptors blunts the decreased HCO3 secretion and increased H+ secretion in the distal tubule of animals given dietary acid. The data are consistent with endogenous endothelins as mediators of increased distal tubule acidification induced by dietary acid. Topics: Acidosis, Renal Tubular; Ammonium Sulfate; Animals; Bicarbonates; Bosentan; Diet; Endothelin Receptor Antagonists; Endothelin-1; Extracellular Space; Female; Kidney Tubules, Distal; Male; Peptides, Cyclic; Protons; Rats; Rats, Wistar; Sulfonamides | 1997 |