endomorphin-1 and Pain

endomorphin-1 has been researched along with Pain* in 52 studies

Reviews

7 review(s) available for endomorphin-1 and Pain

ArticleYear
Strategies to Improve Bioavailability and In Vivo Efficacy of the Endogenous Opioid Peptides Endomorphin-1 and Endomorphin-2.
    Current topics in medicinal chemistry, 2015, Volume: 16, Issue:2

    Morphine and the other alkaloids found in the opium poppy plant still represent the preferred therapeutic tools to treat severe pain in first aid protocols, as well as chronic pain. The use of the opiate alkaloids is accompanied by several unwanted side effects; additionally, some forms of pain are resistant to standard treatments (e.g. neuropathic pain from cancer). For these reasons, there is currently renewed interest in the design and assay of modified versions of the potent endogenous opioid peptides endomorphin-1 and endomorphin-2. This review presents a selection of the strategies directed at preparing highly stable peptidomimetics of the endomorphins, and of the strategies aimed at improving central nervous system bioavailability, for which increased in vivo antinociceptive efficacy was clearly demonstrated.

    Topics: Analgesics, Opioid; Biological Availability; Humans; Molecular Conformation; Oligopeptides; Pain

2015
Cyclic endomorphin analogs in targeting opioid receptors to achieve pain relief.
    Future medicinal chemistry, 2014, Volume: 6, Issue:18

    Endomorphins, the endogenous ligands of the µ-opioid receptor, are attractive candidates for opioid-based pain-relieving agents. These tetrapeptides, with their remarkable affinity for the µ-opioid receptor, display favorable antinociceptive activity when injected directly into the brain of experimental animals. However, the application of endomorphins as clinical analgesics has been impeded by their instability in body fluids and inability to reach the brain after systemic administration. Among numerous modifications of the endomorphin structure aimed at improving their pharmacological properties, cyclization can be viewed as an interesting option. Here, we have summarized recent advances in obtaining endomorphin-based cyclic peptide analogs.

    Topics: Analgesics, Opioid; Animals; Binding Sites; Blood-Brain Barrier; Molecular Docking Simulation; Oligopeptides; Pain; Receptors, Opioid

2014
Antinociception by endogenous ligands at peripheral level.
    Ideggyogyaszati szemle, 2011, Mar-30, Volume: 64, Issue:5-6

    It is well known that a multitude of ligands and receptors are involved in the nociceptive system, and some of them increase, while others inhibit the pain sensation both peripherally and centrally. These substances, including neurotransmitters, neuromodulators, hormones, cytokines etc., may modify the activity of nerves involved in the pain pathways. It is also well known that the organism can express very effective antinociception in different circumstances, and during such situations the levels of various endogenous ligands change. Accordingly, a very exciting field of pain research relates to the roles of endogenous ligands. The peripheral action may possibly be extremely important, because low doses of the endogenous ligands may reduce pain without disphoric side-effects, and without the abused potential typical of centrally acting ligands. This review provides a comprehensive overview of the endogenous ligands that can induce antinociception, discusses their effects on different receptors and focuses on their action at peripheral level. We found 17 different endogenous ligands which produced antinociception after their topical administration. The results suggest an important direction for the development of pain strategies that focus on the local administrations of different endogenous ligands.

    Topics: Analgesics, Opioid; Animals; Annexin A1; beta-Endorphin; Cytokines; Endorphins; Excitatory Amino Acid Agents; Hemoglobins; Kynurenic Acid; Ligands; Lipid Metabolism; Melatonin; Mice; Neuropeptides; Neurotransmitter Agents; Nociceptin; Oligopeptides; Opioid Peptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Peripheral Nervous System; Pituitary Adenylate Cyclase-Activating Polypeptide; Rats; Somatostatin

2011
[Endomorphins--endogenous ligands of the mu-opioid receptor].
    Postepy biochemii, 2009, Volume: 55, Issue:4

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

    Topics: Animals; Brain; Models, Animal; Oligopeptides; Pain; Receptors, Opioid, mu; Structure-Activity Relationship

2009
Interaction of endogenous ligands mediating antinociception.
    Brain research reviews, 2006, Aug-30, Volume: 52, Issue:1

    It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.

    Topics: Analgesics, Opioid; Animals; Drug Interactions; Humans; Ligands; Models, Biological; Narcotics; Neurotransmitter Agents; Nociceptors; Oligopeptides; Pain; Pain Threshold

2006
Isolation and distribution of endomorphins in the central nervous system.
    Japanese journal of pharmacology, 2002, Volume: 89, Issue:3

    Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2, EM-1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) have the highest affinity and selectivity for the mu-opioid receptor (MOP-R) of all known mammalian opioids. They were isolated from bovine and human brain, and are structurally distinct from the other endogenous opioids. Both EM-1 and EM-2 have potent antinociceptive activity in a variety of animal models of acute, neuropathic and allodynic pain. They regulate cellular signaling processes in a manner consistent with MOP-R-mediated effects. The EMs are implicated in the natural modulation of pain by extensive data localizing EM-like immunoreactivity (EM-LI) near MOP-Rs in several regions of the nervous system known to regulate pain. These include the primary afferents and their terminals in the spinal cord dorsal horn, where EM-2 is well-positioned to modulate pain in its earliest stages of perception. In a nerve-injury model of chronic pain, a loss of spinal EM2-LI occurs concomitant with the onset of chronic pain. The distribution of the EMs in other areas of the nervous system is consistent with a role in the modulation of diverse functions, including autonomic, neuroendocrine and reward functions as well as modulation of responses to pain and stress. Unlike several other mu opioids, the threshold dose of EM-1 for analgesia is well below that for respiratory depression. In addition, rewarding effects of EM-1 can be separated from analgesic effects. These results indicate a favorable therapeutic profile of EM-1 relative to other mu opioids. Thus, the pharmacology and distribution of EMs provide new avenues both for therapeutic development and for understanding the neurobiology of opioids.

    Topics: Animals; Central Nervous System; Humans; Oligopeptides; Pain

2002
Pain inhibition by endomorphins.
    Annals of the New York Academy of Sciences, 1999, Volume: 897

    Spinal analgesic effects of endomorphin-1 and endomorphin-2 were studied during acute, inflammatory, and neuropathic pain in rats chronically implanted with intrathecal cannulas. Endomorphin-1 and endomorphin-2 (2.5-10 micrograms i.t.), as well as their analogues, increased the tail-flick and the paw pressure latencies. In a model of inflammatory pain, the formalin-induced behavior was attenuated by endomorphins; however, the effect studied was not dose-dependent and was less pronounced in comparison with that evoked by morphine. On the other hand, in rats with a sciatic nerve injury (crush), endomorphins antagonized allodynia in a dose-dependent manner, whereas morphine was found to be ineffective in a similar dose range. Endomorphins also exhibited an antinociceptive potency in rats tolerant to morphine. In conclusion, our results show a powerful analgesic action of endomorphins at the spinal level. The most interesting finding is a strong effect of endomorphins in neuropathic pain, which opens up a possibility of using these compounds in pain therapy.

    Topics: Analgesics, Opioid; Animals; Inflammation; Neuralgia; Oligopeptides; Pain; Pain Threshold; Rats; Spinal Cord

1999

Other Studies

45 other study(ies) available for endomorphin-1 and Pain

ArticleYear
Analgesic Opioid Ligand Discovery Based on Nonmorphinan Scaffolds Derived from Natural Sources.
    Journal of medicinal chemistry, 2022, 02-10, Volume: 65, Issue:3

    Strong opioid analgesics, including morphine, are the mainstays for treating moderate to severe acute pain and alleviating chronic cancer pain. However, opioid-related adverse effects, including nausea or vomiting, sedation, respiratory depression, constipation, pruritus (itch), analgesic tolerance, and addiction and abuse liability, are problematic. In addition, the use of opioids to relieve chronic noncancer pain is controversial due to the "opioid crisis" characterized by opioid misuse or abuse and escalating unintentional death rates due to respiratory depression. Hence, considerable research internationally has been aimed at the "Holy Grail" of the opioid analgesic field, namely the discovery of novel and safer opioid analgesics with improved opioid-related adverse effects. In this Perspective, medicinal chemistry strategies are addressed, where structurally diverse nonmorphinan-based opioid ligands derived from natural sources were deployed as lead molecules. The current state of play, clinical or experimental status, and novel opioid ligand discovery approaches are elaborated in the context of retaining analgesia with improved safety and reduced adverse effects, especially addiction liability.

    Topics: Analgesics, Opioid; Animals; Biological Products; Cell Line, Tumor; Chemistry, Pharmaceutical; Drug Discovery; Humans; Ligands; Pain; Peptides; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

2022
Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects.
    Journal of medicinal chemistry, 2021, 11-25, Volume: 64, Issue:22

    Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.

    Topics: Analgesics; Analgesics, Opioid; Animals; Brain; Conditioning, Operant; Endorphins; Gastrointestinal Transit; Mice; Motor Activity; Pain; Peptides

2021
Spinal endomorphins attenuate burn-injury pain in male mice by inhibiting p38 MAPK signaling pathway through the mu-opioid receptor.
    European journal of pharmacology, 2021, Jul-15, Volume: 903

    Burn injury is one of the main causes of mortality worldwide and frequently associated with severe and long-lasting pain that compromises the quality of patient life. Several studies have shown that the mu-opioid system plays an important role in burn pain relief. In this study, we investigated the spinal antinociception induced by the endogenous mu-opioid receptor (MOR) agonists endomorphins and explored their mechanisms of actions in burn injury-induced pain model. Our results showed that intrathecal injection of endomorphin-1 and -2 dose-dependently attenuated mechanical allodynia and thermal hyperalgesia via the mu-opioid receptor in mice on day 3 after burn injury, which was consistent with the data obtained from the mu-opioid receptor knockout mice. Western blot showed that the phosphorylation levels of extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) in ipsilateral spinal cord tissues were significantly up-regulated after burn injury. Intrathecal injection of endomorphins selectively inhibited the activation of p38 MAPK on day 3 after burn injury via the mu-opioid receptor. Further studies found that repeated application of the specific p38 MAPK inhibitor SB203580 dose-dependently inhibited burn-injury pain, as well as the activation of spinal p38 MAPK. Taken together, our present study demonstrates that intrathecal injection of endomorphins attenuates burn-injury pain in male mice by affecting the spinal activation of p38 MAPK via the mu-opioid receptor.

    Topics: Analgesics, Opioid; Animals; Behavior, Animal; Burns; Disease Models, Animal; Enzyme Inhibitors; Hyperalgesia; Imidazoles; Injections, Spinal; Male; Mice; Mice, Knockout; Narcotic Antagonists; Oligopeptides; p38 Mitogen-Activated Protein Kinases; Pain; Pyridines; Receptors, Opioid, mu; Signal Transduction; Spinal Cord Injuries

2021
Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications.
    Bioorganic & medicinal chemistry, 2020, 05-01, Volume: 28, Issue:9

    Endomorphin (EM)-1 and EM-2 are the most effective endogenous analgesics with efficient separation of analgesia from the risk of adverse effects. Poor metabolic stability and ineffective analgesia after peripheral administration were detrimental for the use of EMs as novel clinical analgesics. Therefore, here, we aimed to establish new EM analogs via introducing different bifunctional d-amino acids at position 2 of [(2-furyl)Map

    Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Design; Formaldehyde; Male; Mice; Mice, Inbred Strains; Molecular Structure; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, mu; Structure-Activity Relationship

2020
Endomorphin-1 analogs with oligoarginine-conjugation at C-terminus produce potent antinociception with reduced opioid tolerance in paw withdrawal test.
    Peptides, 2018, Volume: 106

    For clinical use, it is essential to develop potent endomorphin (EM) analogs with reduced antinociceptive tolerance. In the present study, the antinociceptive activities and tolerance development of four potent EM-1 analogs with C-terminal oligoarginine-conjugation was evaluated and compared in the radiant heat paw withdrawal test. Following intracerebroventricular (i.c.v.) administration, all analogs 1-4 produced potent and prolonged antinociceptive effects. Notably, analogs 2 and 4 with the introduction of D-Ala in position 2 exhibited relatively higher analgesic potencies than those of analogs 1 and 3 with β-Pro substitution, consistent with their μ-opioid binding characteristic. In addition, at a dose of 50 μmol/kg, endomorphin-1 (EM-1) failed to produce any significant antinociceptive activity after peripheral administration, whereas analogs 1-4 induced potent antinociceptive effects with an increased duration of action. Herein, our results indicated the development of antinociceptive tolerance to EM-1 and morphine at the supraspinal level on day 7. By contrast, analogs 1-4 decreased the antinociceptive tolerance. Furthermore, subcutaneous (s.c.) administration of morphine at 50 μmol/kg also developed the antinociceptive tolerance, whereas the extent of tolerance developed to analogs 1-4 was largely reduced. Especially, analog 4 exhibited non-tolerance-forming antinociception after peripheral administration. The present investigation gave the evidence that C-terminal conjugation of EM-1 with oligoarginine vector will facilitate the development of novel opioid analgesics with reduced opioid tolerance.

    Topics: Analgesics; Analgesics, Opioid; Animals; Arginine; Drug Tolerance; Hindlimb; Hot Temperature; Male; Mice; Models, Animal; Oligopeptides; Pain; Receptors, Opioid, mu

2018
Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines.
    Journal of neuroinflammation, 2018, Nov-15, Volume: 15, Issue:1

    Preemptive administration of analgesic drugs reduces perceived pain and prolongs duration of antinociceptive action. Whereas several lines of evidence suggest that endomorphins, the endogenous mu-opioid agonists, attenuate acute and chronic pain at the spinal level, their preemptive analgesic effects remain to be determined. In this study, we evaluated the anti-allodynic activities of endomorphins and explored their mechanisms of action after preemptive administration in a mouse model of inflammatory pain.. The anti-allodynic activities of preemptive intrathecal administration of endomorphin-1 and endomorphin-2 were investigated in complete Freund's adjuvant (CFA)-induced inflammatory pain model and paw incision-induced postoperative pain model. The modulating effects of endomorphins on the expression of p38 mitogen-activated protein kinase (p38 MAPK) and inflammatory mediators in dorsal root ganglion (DRG) of CFA-treated mice were assayed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, or immunofluorescence staining.. Preemptive intrathecal injection of endomorphins dose-dependently attenuated CFA-induced mechanical allodynia via the mu-opioid receptor and significantly reversed paw incision-induced allodynia. In addition, CFA-caused increase of phosphorylated p38 MAPK in DRG was dramatically reduced by preemptive administration of endomorphins. Repeated intrathecal application of the specific p38 MAPK inhibitor SB203580 reduced CFA-induced mechanical allodynia as well. Further RT-PCR assay showed that endomorphins regulated the mRNA expression of inflammatory cytokines in DRGs induced by peripheral inflammation.. Our findings reveal a novel mechanism by which preemptive treatment of endomorphins attenuates inflammatory pain through regulating the production of inflammatory cytokines in DRG neurons via inhibition of p38 MAPK phosphorylation.

    Topics: Analgesics, Opioid; Animals; Disease Models, Animal; Freund's Adjuvant; Ganglia, Spinal; Gene Expression Regulation; Inflammation; Injections, Spinal; Male; Mice; Neurons; Oligopeptides; Opioid Peptides; p38 Mitogen-Activated Protein Kinases; Pain; Pain Threshold; Signal Transduction; Time Factors

2018
Involvement of multiple µ-opioid receptor subtypes on the presynaptic or postsynaptic inhibition of spinal pain transmission.
    Peptides, 2014, Volume: 51

    The involvement of the μ-opioid receptor subtypes on the presynaptic or postsynaptic inhibition of spinal pain transmission was characterized in ddY mice using endomorphins. Intrathecal treatment with capsaicin, N-methyl-d-aspartate (NMDA) or substance P elicited characteristic nociceptive behaviors that consisted primarily of vigorous biting and/or licking with some scratching. Intrathecal co-administration of endogenous μ-opioid peptide endomorphin-1 or endomorphin-2 resulted in a potent antinociceptive effect against the nociceptive behaviors induced by capsaicin, NMDA or substance P, which was eliminated by i.t. co-administration of the μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP). The antinociceptive effect of endomorphin-1 was significantly suppressed by i.t.-co-administration of the μ2-opioid receptor antagonist Tyr-D-Pro-Trp-Phe-NH2 (D-Pro2-endomorphin-1) but not the μ1-opioid receptor antagonist Tyr-D-Pro-Phe-Phe-NH2 (D-Pro2-endomorphin-2) on capsaicin- or NMDA-elicited nociceptive behaviors. In contrast, the antinociceptive effect of endomorphin-2 was significantly suppressed by i.t.-co-administration of D-Pro2-endomorphin-2 but not D-Pro2-endomorphin-1 on capsaicin-, NMDA- or substance P-elicited nociceptive behaviors. Interestingly, regarding substance P-elicited nociceptive behaviors, the antinociceptive effect of endomorphin-1 was significantly suppressed by i.t.-co-administration of another μ2-opioid receptor antagonist, Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), but not D-Pro2-endomorphin-1 or D-Pro2-endomorphin-2. The present results suggest that the multiple μ-opioid receptor subtypes are involved in the presynaptic or postsynaptic inhibition of spinal pain transmission.

    Topics: Analgesics; Animals; Capsaicin; Male; Mice; N-Methylaspartate; Nociception; Oligopeptides; Pain; Presynaptic Terminals; Receptors, Opioid, mu; Somatostatin; Substance P; Synaptic Transmission

2014
A new class of highly potent and selective endomorphin-1 analogues containing α-methylene-β-aminopropanoic acids (map).
    Journal of medicinal chemistry, 2012, Jul-12, Volume: 55, Issue:13

    A new class of endomorphin-1 (EM-1) analogues were synthesized by introduction of novel unnatural α-methylene-β-amino acids (Map) at position 3 or/and position 4. Their binding and functional activity, metabolic stability, and antinociceptive activity were determined and compared. Most of these analogues showed high affinities for the μ-opioid receptor and an increased stability in mouse brain homogenates compared with EM-1. Examination of cAMP accumulation and ERK1/2 phosphorylation in HEK293 cells confirmed the agonist properties of these analogues. Among these new analogues, H-Tyr-Pro-Trp-(2-furyl)Map-NH(2) (analogue 12) exhibited the highest binding potency (K(i)(μ) = 0.221 nM) and efficacy (EC(50) = 0.0334 nM, E(max) = 97.14%). This analogue also displayed enhanced antinociceptive activity in vivo in comparison to EM-1. Molecular modeling approaches were then carried out to demonstrate the interaction pattern of these analogues with the opioid receptors. We found that, compared to EM-1, the incorporation of our synthesized Map at position 4 would bring the analogue to a closer binding mode with the μ-opioid receptor.

    Topics: Amino Acid Sequence; Amino Acids; Aminoisobutyric Acids; Analgesics; Animals; Cyclic AMP; Guinea Pigs; HEK293 Cells; Humans; Ileum; Male; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Models, Molecular; Molecular Dynamics Simulation; Muscle Contraction; Oligopeptides; Pain; Protein Binding; Receptors, Opioid, mu; Structure-Activity Relationship; Vas Deferens

2012
Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat.
    Psychopharmacology, 2012, Volume: 224, Issue:2

    Agonists at the mu opioid receptor (MOR) are widely recognized for their effects on reward and pain. Although prior studies have attributed some of these effects to MORs on GABA neurons in the ventral tegmental area (VTA), recent studies have identified a region of particularly strong MOR immunostaining residing caudal to the VTA, in a region denoted the rostromedial tegmental nucleus (RMTg).. Hence, we examined whether rats would self-administer small doses (50-250 pmol) of the selective MOR agonist endomorphin-1 (EM1) into the RMTg and adjacent sites. EM1 was chosen due to its short half-life, thus limiting drug spread, and due to its presence endogenously in brain neurons, including some afferents to the RMTg.. The highest rates of EM1 self-administration occurred within 0.5 mm of the RMTg center, in a region roughly 0.8-1.6 mm caudal to the majority of VTA DA neurons. In contrast, self-administration rates were much lower in the adjacent VTA, interpeduncular nucleus, central linear nucleus, or median raphe nucleus. Furthermore, EM1 infusions into the RMTg, but not surrounding regions, produced conditioned place preference, while EM1 infusions into the RMTg but not anterior VTA markedly reduced formalin-induced pain behaviors. EM1 effects were mimicked by infusions of the GABA agonist muscimol into the same region, consistent with EM1 having inhibitory actions on its target neurons.. These results implicate a novel brain region in modulating MOR influences on both appetitive and aversive behavior.

    Topics: Analgesics, Opioid; Animals; Dopamine; Dose-Response Relationship, Drug; GABA-A Receptor Agonists; Male; Muscimol; Oligopeptides; Pain; Protein Precursors; Rats; Rats, Wistar; Receptors, Opioid; Receptors, Opioid, mu; Reinforcement, Psychology; Reward; Self Administration; Tegmentum Mesencephali

2012
Synthesis and antinociceptive effects of endomorphin-1 analogs with C-terminal linked by oligoarginine.
    Peptides, 2011, Volume: 32, Issue:2

    Endomorphins (EMs) cannot be delivered into the central nervous system (CNS) in sufficient quantity to elicit antinociception when given systemically because they are severely restricted by the blood-brain barrier (BBB). In the present study, we investigated herein a series of EM-1 analogs with C-terminal linked by oligoarginine in order to improve the brain delivery and antinociception after systemic administration. Indeed, all these analogs decreased the opioid receptor affinity and in vitro pharmacological activity. Moreover, analogs 4, 7-9 produced a less potent antinociceptive activity after intracerebroventricular (i.c.v.) administration, with the ED(50) values about 11- to 13-fold lower potencies than that of EM-1. Nevertheless, our results revealed that EM-1 failed to induce any significant antinociception at a dose of 50μmol/kg after subcutaneous (s.c.) administration, whereas equimolar dose of these four analogs produced a little low but significant antinociceptive effects. Naloxone (10nmol/kg, i.c.v.) significantly blocked the antinociceptive effects, indicating an opioid and central mechanism. These results demonstrated that C-terminal of EM-1 linked to oligoarginine improved the brain delivery, eliciting potent antinociception following peripheral administration.

    Topics: Analgesics, Opioid; Animals; Arginine; Brain; Chromatography, High Pressure Liquid; Female; Guinea Pigs; Ileum; Male; Mice; Mice, Inbred Strains; Muscle Contraction; Naloxone; Oligopeptides; Pain; Pain Measurement; Radioligand Assay; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Spectrometry, Mass, Electrospray Ionization; Vas Deferens

2011
Design, synthesis and pharmacological characterization of endomorphin analogues with non-cyclic amino acid residues in position 2.
    Basic & clinical pharmacology & toxicology, 2010, Volume: 106, Issue:2

    A series of endomorphin-1 (EM-1) and endomorphin-2 (EM-2) analogues, containing non-cyclic amino acids (Ala, D-Ala, beta-Ala, NMeAla, D-NMeAla or Sar) instead of Pro in position 2 was synthesized, where NMeAla = N-methylalanine and Sar = N-methylglycine, sarcosine. The opioid activity profiles of these peptides were determined in mu and delta opioid receptor (MOR and DOR)-representative binding assays and bioassays in vitro, as well as in the mouse hot-plate test in vivo. Finally, the degradation rates of all analogues in the presence of either rat brain homogenate or selected proteolytic enzymes were determined. Analogues of EM-2 were generally more potent than the respective analogues of EM-1. EM-2 analogues with D-Ala or D-NMeAla were about twofold more potent than the parent peptide and were least prone to degradation by brain homogenate, dipeptydyl peptidase IV and aminopeptidase M. In the in vivo test, [D-Ala(2)]EM-2 and [D-NMeAla(2)]EM-2 showed much higher analgesic potency than EM-2 which confirmed the usefulness of structural modifications in obtaining new leads for pain-relief therapeutics.

    Topics: Analgesics, Opioid; Animals; Brain; CD13 Antigens; CHO Cells; Cricetinae; Cricetulus; Dipeptidyl Peptidase 4; Disease Models, Animal; Male; Mice; Oligopeptides; Pain; Protein Binding; Rats; Receptors, Opioid, delta; Receptors, Opioid, mu

2010
Effects of Endokinin A/B and Endokinin C/D on the antinociception of Endomorphin-1 in mice.
    Peptides, 2010, Volume: 31, Issue:4

    In our previous study, Endokinin A/B (EKA/B, the common C-terminal decapeptide in Endokinin A and Endokinin B) was found to induce analgesic effect at high dose and nociception at low dose, while Endokinin C/D (EKC/D, the common C-terminal duodecapeptide in Endokinin C and Endokinin D) has analgesic effect only. So in this study an attempt was undertaken to investigate the interaction of EKA/B and EKC/D with Endomorphin-1 (EM-1) on antinociceptive effect at supraspinal level. Results showed that the antinociceptive effect of EM-1 was enhanced by high dose of EKA/B and abolished by low dose of EKA/B, while EKC/D could only enhance the analgesic effect. Mechanism studies showed that EKA/B blocked the antinociception of EM-1 by activating neurokinin-1 receptor (NK(1)), whose specific antagonist, SR140333B could fully block EKA/B-induced attenuation on the analgesic response of EM-1. Surprisingly, EKC/D could also block the same EKA/B-induced attenuation. Taken together, the different effects of EKA/B and EKC/D on the antinociception of EM-1 may pave the way for a new strategy on investigating the interaction between tachykinins and opioids on pain modulation.

    Topics: Analgesics, Opioid; Animals; Humans; Male; Mice; Naloxone; Narcotic Antagonists; Neurokinin-1 Receptor Antagonists; Oligopeptides; Pain; Pain Measurement; Protein Isoforms; Protein Precursors; Tachykinins; Tropanes

2010
Peripheral antinociceptive effects of the cyclic endomorphin-1 analog c[YpwFG] in a mouse visceral pain model.
    Peptides, 2010, Volume: 31, Issue:11

    We previously described a novel cyclic endomorphin-1 analog c[Tyr-D-Pro-D-Trp-Phe-Gly] (c[YpwFG]), acting as a mu-opioid receptor (MOR) agonist. This study reports that c[YpwFG] is more lipophilic and resistant to enzymatic hydrolysis than endomorphin-1 and produces preemptive antinociception in a mouse visceral pain model when injected intraperitoneally (i.p.) or subcutaneously (s.c.) before 0.6% acetic acid, employed to evoke abdominal writhing (i.p. ED(50)=1.24 mg/kg; s.c. ED(50)=2.13 mg/kg). This effect is reversed by the selective MOR antagonist β-funaltrexamine and by a high dose of the mu(1)-opioid receptor-selective antagonist naloxonazine. Conversely, the kappa-opioid receptor antagonist nor-binaltorphimine and the delta-opioid receptor antagonist naltrindole are ineffective. c[YpwFG] produces antinociception when injected i.p. after acetic acid (ED(50)=4.80 mg/kg), and only at a dose of 20mg/kg did it elicit a moderate antinociceptive response in the mouse, evaluated by the tail flick assay. Administration of a lower dose of c[YpwFG] (10mg/kg i.p.) apparently produces a considerable part of antinociception on acetic acid-induced writhes through peripheral opioid receptors as this action is fully prevented by i.p. naloxone methiodide, which does not readily cross the blood-brain barrier; whereas this opioid antagonist injected intracerebroventricularly (i.c.v.) is not effective. Antinociception produced by a higher dose of c[YpwFG] (20mg/kg i.p.) is partially reversed by naloxone methiodide i.c.v. administered. Thus, only at the dose of 20mg/kg c[YpwFG] can produce antinociception through both peripheral and central opioid receptors. In conclusion, c[YpwFG] displays sufficient metabolic stability to be effective after peripheral administration and demonstrates the therapeutic potential of endomorphin derivatives as novel analgesic agents to control visceral pain.

    Topics: Analgesics; Animals; Injections, Intraperitoneal; Injections, Intraventricular; Injections, Subcutaneous; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Peptides, Cyclic; Receptors, Opioid, mu

2010
Antinociceptive interactions between anandamide and endomorphin-1 at the spinal level.
    Clinical and experimental pharmacology & physiology, 2009, Volume: 36, Issue:4

    1. Although it is well known that the combined administration of synthetic or plant-originated opioids with cannabinoids (CB) results in synergistic antinociception, the effects of combined administration of endogenous ligands acting at micro-opioid and CB receptors are not known. The aim of the present study was to determine the interaction between anandamide (AEA; a CB(1) receptor agonist) and endomorphin-1 (EM-1; a micro-opioid receptor agonist) after intrathecal administration. 2. Nociception was assessed by the paw-withdrawal test after carrageenan-induced inflammation in male Wistar rats. 3. Endomorphin-1 (16.4 pmol to 16.4 nmol) and AEA (4.3-288 nmol) alone dose-dependently decreased carrageenan-induced thermal hyperalgesia, although the highest dose of AEA also exhibited pain-inducing potential. The potency of AEA was approximately 59-fold lower than that of EM-1 (35% effective dose (ED(35)) 194.4 vs 3.3 nmol, respectively). Coadministration of these ligands revealed that combinations of 16.4 pmol EM-1 plus 28.8 or 86.5 nmol AEA were more effective than either drug alone, but other combinations were no more effective than the administration of EM-1 itself. Therefore, coadministration of AEA did not significantly shift the dose-response curve to EM-1. 4. The results of the present study indicate that the coadministration of AEA and EM-1 results in potentiated antihyperalgesia only for a combination of specific doses. Because AEA activates other receptor types (e.g. TRPV1) in addition to CB(1) receptors, the results of the present suggest that, after the coadministration of EM-1 and AEA, complex interactions ensue that may lead to different outcomes compared with those seen following the injection of exogenous ligands.

    Topics: Analgesics; Animals; Arachidonic Acids; Carrageenan; Drug Combinations; Drug Evaluation, Preclinical; Drug Interactions; Endocannabinoids; Hyperalgesia; Inflammation; Injections, Spinal; Male; Oligopeptides; Pain; Polyunsaturated Alkamides; Rats; Rats, Wistar; Spine; Time Factors

2009
The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies.
    Anesthesia and analgesia, 2008, Volume: 106, Issue:6

    Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for mu-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a highly effective peptidic mu-opioid receptor agonist.. Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [(35)S]GTP gamma S binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord.. After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration-response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [(35)S]GTP gamma S binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%-60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by mu-opioid receptor selective dose of naltrexone (P < 0.05), but not by delta- and kappa-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05).. Endomorphins are partial agonists for G protein activation at spinal and thalamic mu-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins' antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus.

    Topics: Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Partial Agonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Sulfur Radioisotopes; Thalamus; Time Factors

2008
Transformation of mu-opioid receptor agonists into biologically potent mu-opioid receptor antagonists.
    Bioorganic & medicinal chemistry, 2007, Feb-01, Volume: 15, Issue:3

    N-Allylation (-CH(2)-CHCH(2)) of [Dmt(1)]endomorphins yielded the following: (i) [N-allyl-Dmt(1)]endomorphin-2 (Dmt=2',6'-dimethyl-l-tyrosine) (12) and [N-allyl-Dmt(1)]endomorphin-1 (15) (K(i)mu=0.45 and 0.26nM, respectively) became mu-antagonists (pA(2)=8.59 and 8.18, respectively) with weak delta-antagonism (pA(2)=6.32 and 7.32, respectively); (ii) intracerebroventricularly administered 12 inhibited morphine-induced CNS-mediated antinociception in mice [AD(50) (0.148ng/mouse) was 16-fold more potent than naloxone], but not spinal antinociception, and (iii) 15 reversed the alcohol-elevated frequency in spontaneous inhibitory post-synaptic currents (IPSC) in hippocampal CA1 pyramidal cells in rat brain slices (P=0.0055). Similarly, N-allylation of the potent mu-opioidmimetic agonists, 1,6-bis-[H-Dmt-NH]-hexane and 3,6-bis-[Dmt-NH-propyl]-2(1H)-pyrazinone, converted them into mu-antagonists (pA(2)=7.23 and 7.17 for the N-allyl-derivatives 17 and 19, respectively), and exhibited weak delta-antagonism. Thus, N-allylation of Dmt containing opioid peptides or opioidmimetics continues to provide a facile means to convert selective mu-opioid agonists into potent mu-opioid antagonists.

    Topics: Alkylation; Analgesics, Opioid; Animals; Brain; Disease Models, Animal; Guinea Pigs; Male; Mice; Morphine; Pain; Rats; Receptors, Opioid, mu; Structure-Activity Relationship; Synaptosomes; Vas Deferens

2007
Endomorphin-1 analogs with enhanced metabolic stability and systemic analgesic activity: design, synthesis, and pharmacological characterization.
    Bioorganic & medicinal chemistry, 2007, Feb-15, Volume: 15, Issue:4

    We synthesized four new analogs of endomorphin-1 by systematic chemical modifications. To identify the best possible drug candidates for clinical pain management and to investigate the potential contribution of these alterations to the biological activity, their pharmacological properties were determined. All of the analogs showed significantly enhanced metabolic stability. The fact that centrally mediated analgesia following peripheral administration was observed with one of the analogs suggested the approach design undertaken here had validity in the development of endomorphin-1 as a successful opioid drug for the clinic.

    Topics: Analgesics; Analgesics, Opioid; Animals; Drug Design; Drug Stability; Mice; Oligopeptides; Pain; Pharmacokinetics

2007
A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
    European journal of pharmacology, 2007, Jun-01, Volume: 563, Issue:1-3

    The antagonism by Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) analog, of the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [D-Ala2,NMePhe4,Gly(ol)5]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2) was studied with the mouse tail-flick test. D-Pro2-Tyr-W-MIF-1 (0.5-3 nmol) given intracerebroventricularly (i.c.v.) had no effect on the thermal nociceptive threshold. High doses of D-Pro2-Tyr-W-MIF-1 (4-16 nmol) administered i.c.v. produced antinociception with a low intrinsic activity of about 30% of the maximal possible effect. D-Pro2-Tyr-W-MIF-1 (0.25-2 nmol) co-administered i.c.v. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 or DAMGO without affecting endomorphin-2-induced antinociception. A 0.5 nmol dose of D-Pro2-Tyr-W-MIF-1 significantly attenuated Tyr-W-MIF-1-induced antinociception but not DAMGO- or endomorphin-1-induced antinociception. The highest dose (2 nmol) of D-Pro2-Tyr-W-MIF-1 almost completely attenuated Tyr-W-MIF-1-induced antinociception. However, that dose of D-Pro2-Tyr-W-MIF-1 significantly but not completely attenuated endomorphin-1 or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by D-Pro2-Tyr-W-MIF-1. Pretreatment i.c.v. with various doses of naloxonazine, a mu1-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID50 values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than that of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that D-Pro2-Tyr-W-MIF-1 is a selective antagonist for the mu2-opioid receptor in the mouse brain. D-Pro2-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, which both show a preference for the mu2-opioid receptor in the brain.

    Topics: Analgesics, Opioid; Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Hot Temperature; Injections, Intraventricular; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Reaction Time; Receptors, Opioid, mu; Somatostatin; Time Factors

2007
Antinociceptive interactions of triple and quadruple combinations of endogenous ligands at the spinal level.
    Brain research, 2007, Jun-25, Volume: 1155

    A very interesting and rapidly developing field of pain research is related to the roles of different endogenous ligands. This study determined the antinociceptive interactions of triple and quadruple combinations of different endogenous ligands (endomorphin-1, adenosine, agmatine and kynurenic acid) on carrageenan-induced inflammatory pain model at the spinal level. Intrathecal infusion (60 min) of these drugs alone, in double, triple or quadruple combinations, was followed by a 60-min observation period. During the infusion, antihyperalgesic effect of 0.3 microg/min endomorphin-1 was higher in the triple combinations than those in the double combinations. After cessation of drug administration, only the combination of 0.3 microg/min endomorphin-1, 1 microg/min agmatine, and 0.3 microg/min adenosine was more effective than the double combinations. In quadruple combinations, the antinociceptive effects of both 0.1 and 0.3 microg/min endomorphin-1 were significantly potentiated by the otherwise ineffective triple combination of adenosine, agmatine, and kynurenic acid. No side effects could be observed at these doses. These results demonstrate that triple and quadruple combinations of these endogenous ligands caused more effective antihyperalgesia compared with double combinations. Accordingly, the doses of these substances could be further reduced, thus, reinforcing the view that complex activation and/or inhibition of different systems can be sufficiently effective in blocking nociception without adverse effects. Because all of these drugs had effects on various receptors and systems, the possible types of these interactions were discussed.

    Topics: Adenosine; Agmatine; Analgesics; Animals; Area Under Curve; Disease Models, Animal; Drug Combinations; Injections, Spinal; Kynurenic Acid; Ligands; Male; Motor Activity; Oligopeptides; Pain; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Opioid, mu; Spinal Cord

2007
Colocalization and shared distribution of endomorphins with substance P, calcitonin gene-related peptide, gamma-aminobutyric acid, and the mu opioid receptor.
    The Journal of comparative neurology, 2007, Jul-10, Volume: 503, Issue:2

    The endomorphins are endogenous opioids with high affinity and selectivity for the mu opioid receptor (MOR, MOR-1, MOP). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH(2); EM1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH(2); EM2) have been localized to many regions of the central nervous system (CNS), including those that regulate antinociception, autonomic function, and reward. Colocalization or shared distribution (overlap) of two neurotransmitters, or a transmitter and its cognate receptor, may imply an interaction of these elements in the regulation of functions mediated in that region. For example, previous evidence of colocalization of EM2 with substance P (SP), calcitonin gene-related peptide (CGRP), and MOR in primary afferent neurons suggested an interaction of these peptides in pain modulation. We therefore investigated the colocalization of EM1 and EM2 with SP, CGRP, and MOR in other areas of the CNS. EM2 was colocalized with SP and CGRP in the nucleus of the solitary tract (NTS) and with SP, CGRP and MOR in the parabrachial nucleus. Several areas in which EM1 and EM2 showed extensive shared distributions, but no detectable colocalization with other signaling molecules, are also described.

    Topics: Animals; Brain; Calcitonin Gene-Related Peptide; gamma-Aminobutyric Acid; Immunohistochemistry; Male; Neurons; Oligopeptides; Opioid Peptides; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Substance P; Tissue Distribution

2007
A new electrochemical HPLC method for analysis of enkephalins and endomorphins.
    Journal of neuroscience methods, 2006, Jan-15, Volume: 150, Issue:1

    Endogenous opioid peptides, enkephalins and endomorphins, are located in key regions involved in pain transmission and analgesia, including the spinal cord. These endogenous peptides activate opioid receptors to produce analgesia and reduce pain. We describe a new method to measure enkephalin and endomorphins by high performance liquid chromatography with electrochemical detection. This method allows use of a small sample volume to measure met-enkephalin, leu-enkephalin, endomorphin-1 and endomorphin-2 simultaneously. Using push-pull perfusion of the spinal cord, there were detectable concentrations of met-enkephalin, leu-enkephalin, and endomorphin-2. Further infusion of 100mM potassium chloride evoked release of met-enkephalin and endomorphin-2 but not leu-enkephalin. Thus, we have developed a method to simultaneously measure enkephalins and endomorphins in small sample volume that allows measurement of these opioid peptides in vivo.

    Topics: Animals; Chromatography, High Pressure Liquid; Enkephalin, Leucine; Enkephalin, Methionine; Male; Microdialysis; Oligopeptides; Pain; Perfusion; Posterior Horn Cells; Potassium Chloride; Rats; Rats, Sprague-Dawley; Stimulation, Chemical

2006
Peripheral antinociceptive effects of exogenous and immune cell-derived endomorphins in prolonged inflammatory pain.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Apr-19, Volume: 26, Issue:16

    Endomorphins (EMs) are endogenous selective mu-opioid receptor agonists. Their role in inflammatory pain has not been fully elucidated. Here we examine peripheral antinociception elicited by exogenously applied EM-1 and EM-2 and the contribution of EM-containing leukocytes to stress- and corticotropin-releasing factor (CRF)-induced antinociception. To this end, we applied behavioral (paw pressure) testing, radioligand binding, immunohistochemistry, and flow cytometry in rats with unilateral hindpaw inflammation induced with Freund's adjuvant. EMs injected directly into both hindpaws produced antinociception exclusively in inflamed paws. This was blocked by locally applied mu-receptor-selective (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) but not kappa-receptor-selective (nor-binaltorphimine) antagonists. Delta-receptor antagonists (naltrindole and N,N-diallyl-Tyr-Aib-Aib-Phe-Leu) did not influence EM-1-induced but dose-dependently decreased EM-2-induced antinociception. Antibodies against beta-endorphin, methionine-enkephalin, or leucine-enkephalin did not significantly change EM-2-induced antinociception. Both EMs displaced binding of [3H]-[D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin to mu-receptors in dorsal root ganglia (DRG). Using [3H]-naltrindole or [(125)I]-[D-Pen2,5]-enkephalin, no detectable delta-binding was found in DRG of inflamed hindlimbs. Numerous beta-endorphin-containing and fewer EM-1- and EM-2-containing leukocytes were detected in subcutaneous tissue of inflamed paws. Leukocyte-depleting serum decreased the number of immigrating opioid-containing immune cells and attenuated swim stress- and CRF-induced antinociception in inflamed paws. Both forms of antinociception were strongly attenuated by anti-beta-endorphin and to a lesser degree by anti-EM-1 and anti-EM-2 antibodies injected into inflamed paws. Together, exogenously applied and immune cell-derived EMs alleviate prolonged inflammatory pain through selective activation of peripheral opioid receptors. Exogenous EM-2 in addition to mu-receptors also activates peripheral delta-receptors, which does not involve actions via other opioid peptides.

    Topics: Analgesics; Animals; Dose-Response Relationship, Drug; Inflammation; Male; Neutrophils; Oligopeptides; Pain; Pain Measurement; Rats; Rats, Wistar; Time Factors

2006
Potent in vivo antinociception and opioid receptor preference of the novel analogue [Dmt1]endomorphin-1.
    Pharmacology, biochemistry, and behavior, 2006, Volume: 84, Issue:2

    [Dmt1]Endomorphin-1 is a novel analogue of the potent mu-opioid agonist endomorphin-1. Given the physiological role of endomorphin-1 in vivo, this compound was investigated to determine if the antinociception occurred through systemic, supraspinal or in a combination of both neuronal pathways. This compound exhibited a potent dose-dependent effect intracerebroventricularly in both spinal and supraspinal regions, and was blocked by opioid antagonist naloxone, which verified the involvement of opioid receptors. Specific opioid antagonists characterized the apparent receptor type: beta-funaltrexamine (mu1/mu2-irreversible antagonist) equally inhibited spinal- and central-mediated antinociception; on the other hand, naloxonazine (mu1-subtype) was ineffective in both neural pathways and naltrindole (delta-selective antagonist) partially (26%), though not significantly, blocked only the spinal-mediated antinociception. Therefore, spinal antinociception was primarily triggered by mu2-subtypes without involvement of mu1-opioid receptors; however, although a slight enhancement of antinociception by delta-receptors cannot be completely ruled out since functional bioactivity indicated mixed mu-agonism/delta-antagonism. In terms of the CNS action, [Dmt1]endomorphin-1 appears to act through mu2-opioid receptor subtypes.

    Topics: Analgesia; Animals; Brain; Guinea Pigs; Ileum; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Spinal Cord; Tail; Vas Deferens

2006
Roles of nitric oxide synthase inhibitor on antinociceptive effects of mu-opioid agonist in mice.
    Protein and peptide letters, 2006, Volume: 13, Issue:10

    In the present study, it was found that intraperitoneal (i.p.) pre-injection of N(G)-nitro-L-arginine methyl ester (L-NAME) significantly influenced the endomorphin-1 (EM-1) and endomorphin-2 (EM-2) induced antinociception. These effects could be inhibited or reversed by L-Arg or naloxone. Our results suggest that the modulatory effect of NO system on the mu-receptor evoked analgesia is different between the two mu receptor subtypes.

    Topics: Analgesics; Animals; Enzyme Inhibitors; Male; Mice; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Oligopeptides; Pain; Receptors, Opioid, mu

2006
Endomorphin 1[psi] and endomorphin 2[psi], endomorphins analogues containing a reduced (CH2NH) amide bond between Tyr1 and Pro2, display partial agonist potency but significant antinociception.
    Life sciences, 2005, Jul-22, Volume: 77, Issue:10

    Endomorphin 1 (EM1) and endomorphin 2 (EM2) are highly potent and selective mu-opioid receptor agonists and have significant antinociceptive action. In the mu-selective pocket of endomorphins (EMs), Pro2 residue is a spacer and directs the Tyr1 and Trp3/Phe3 side chains into the required orientation. The present work was designed to substitute the peptide bond between Tyr1 and Pro2 of EMs with a reduced (CH2NH) bond and study the agonist potency and antinociception of EM1[psi] (Tyr[psi(CH2NH)]Pro-Trp-Phe-NH2) and EM2[psi] (Tyr[psi(CH2NH)]Pro-Phe-Phe-NH2). Both EM1[psi] and EM2[psi] are partial mu opioid receptor agonists showing significant loss of agonist potency in GPI assay. However, EMs[psi] exhibited potent supraspinal antinociceptive action in vivo. In the mice tail-flick test, EMs[psi] (1, 5, 10 nmol/mouse, i.c.v.) produced potent and short-lasting antinociception in a dose-dependent and naloxone (1 mg/kg) reversed manner. At the highest dose of 10 nmol, the effect of EM2[psi] was prolonged and more significant than that of EM2. In the rat model of formalin injection induced inflammatory pain, EMs[psi] (0.1, 1, 10 nmol/rat, i.c.v.), like EMs, exerted transient but not dose-dependent antinociception. These results suggested that in the mu-selective pocket of EMs, the rigid conformation induced by the peptide bond between Tyr1 and Pro2 is essential to regulate their agonist properties at the mu opioid receptors. However, the increased conformational flexibility induced by the reduced (CH2NH) bond made less influence on their antinociception.

    Topics: Amides; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Formaldehyde; Guinea Pigs; Inflammation; Injections, Intraventricular; Male; Mice; Oligopeptides; Oxidation-Reduction; Pain; Pain Measurement; Protein Conformation; Rats; Rats, Wistar; Reaction Time; Receptors, Opioid; Structure-Activity Relationship

2005
Chronic arthritis down-regulates peripheral mu-opioid receptor expression with concomitant loss of endomorphin 1 antinociception.
    Arthritis and rheumatism, 2005, Volume: 52, Issue:10

    To determine whether peripheral administration of the endogenous mu-opioid peptide endomorphin 1 could reduce knee joint pain, using animal models of acute and chronic arthritis.. Extracellular electrophysiologic recordings were made of rat knee joint primary afferent nerve activity in response to noxious hyperrotation of the joint. Neuronal activity was assessed before and following local injection of endomorphin 1. Comparisons were made between normal knees and knees with adjuvant-induced monarthritis, tested at 48 hours and 1 week posttreatment. Expression of mu-opioid receptors in the dorsal root ganglia ipsilateral to the chronically inflamed joints was determined by real-time polymerase chain reaction (PCR) and immunohistochemical analysis.. In normal knees, endomorphin 1 caused up to a 75% reduction in joint afferent nerve activity, which was blocked by the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-amide. The inhibitory effect of endomorphin 1 was sustained in acutely inflamed knees. Conversely, in chronically inflamed joints, endomorphin 1 had no observable effect on the primary afferent nerve firing rate elicited by a noxious mechanical stimulus and, as such, was significantly different from the rate in normal joints. Immunohistochemical and real-time PCR analysis of the L3-L5 dorsal root ganglia ipsilateral to the chronic arthritis lesion revealed a reduction in mu-opioid receptor protein and gene expression compared with that in normal control animals.. Taken together, these results provide the first electrophysiologic evidence that selective activation of peripheral mu-opioid receptors reduces normal knee joint mechanosensitivity to a noxious stimulus. Furthermore, the analgesic effect of endomorphin 1 is lost during chronic inflammation due to down-regulation of mu-opioid receptor expression in afferent nerve cell bodies. These findings begin to explain the ambiguous efficacy of peripherally administered mu-opioid drugs in controlling chronic inflammatory joint pain.

    Topics: Analgesics, Opioid; Animals; Arthritis, Experimental; Chronic Disease; Down-Regulation; Edema; Ganglia, Spinal; Joints; Neurons, Afferent; Nociceptors; Oligopeptides; Pain; Rats; Rats, Wistar; Receptors, Opioid, mu; RNA, Messenger

2005
Supraspinal anti-allodynic and rewarding effects of endomorphins in rats.
    Peptides, 2004, Volume: 25, Issue:4

    Two potent endogenous opioid peptides, endomorphin-1 (EM-1) and -2 (EM-2), which are selective micro-opioid agonists, have been identified from bovine and human brain. These endomorphins were demonstrated to produce a potent anti-allodynic effect at spinal level. In the present study, we further investigated their supraspinal anti-allodynic effects and rewarding effects. In a neuropathic pain model (sciatic nerve crush in rats), EM-1 and -2 (15 microg, i.c.v.) both showed significant suppressive effects in the cold-water allodynia test, but EM-1 showed a longer duration than EM-2. Naltrexone (NTX; 15 microg) and naloxonazine (NLZ; 15 microg) were both able to completely block the anti-allodynic effects of EM-1 and -2. In the tests of conditioned place preference (CPP), only EM-2 at the dose of 30 microg showed significant positive rewarding effect, whereas both endomorphins did not induce any reward at the dose of 15 microg. Due to the low solubility and the undesired effect (barrel rotation of the body trunk), EM-1 was not tested for the dose of 30 microg in the CPP tests. It was also found that acute EM-2 (30 microg) administration increased dopamine turnover in the shell of nucleus accumbens in the microdialysis experiments. From these results, it may suggest that EM-1 and -2 could be better supraspinal anti-allodynic agents compared with the other opioid drugs, although they may also induce rewarding.

    Topics: Analgesics, Opioid; Animals; Male; Naloxone; Naltrexone; Narcotic Antagonists; Nerve Compression Syndromes; Oligopeptides; Pain; Pain Management; Pain Measurement; Rats; Rats, Sprague-Dawley

2004
Analgesic tolerance and cross-tolerance to i.c.v. endomorphin-1, endomorphin-2, and morphine in mice.
    Neuroscience letters, 2004, Aug-12, Volume: 366, Issue:2

    The present study examined the development of analgesic tolerance to endomorphin-1 (EM1), endomorphin-2 (EM2), and morphine, and cross-tolerance among these drugs. Male Swiss Webster mice were injected i.c.v. with EM1, EM2, morphine, or vehicle once daily for 5 days, and tested for analgesia in the tail flick test. To determine the extent of cross-tolerance, on the sixth day mice from each of the above groups received i.c.v. injections of EM1, EM2, morphine, or vehicle before analgesic testing. The development of tolerance to EM1 and EM2 closely resembled that of morphine. Complete, symmetrical cross-tolerance was observed between all drugs in the study. These results demonstrate a time-course and extent of tolerance similar to morphine, and support a common mechanism of action through the mu-opioid receptor.

    Topics: Analgesics, Opioid; Animals; Drug Tolerance; Injections, Intraventricular; Male; Mice; Morphine; Oligopeptides; Pain; Receptors, Opioid, mu

2004
Evaluation of endomorphin-1 on the activity of Na(+),K(+)-ATPase using in vitro and in vivo studies.
    European journal of pharmacology, 2003, Jan-05, Volume: 458, Issue:3

    The goal of this study was to investigate the effects of endomorphin-1 on Na(+),K(+)-ATPase activity in mouse brain synaptosome in vitro, and its antinociceptive interaction with the Na(+),K(+)-ATPase inhibitor ouabain. Endomorphin-1 (0.1 nM-10 microM) produced a concentration-dependent (EC(50): 43.19 nM, CI: 23.38-65.71 nM, E(max): 25.86%, CI: 24.53-27.20%), naloxone-reversible increase of the synaptosomal Na(+),K(+)-ATPase activity. The intrathecally (i.t.) administered endomorphin-1 (2-20 microg) produced a dose-dependent short-lasting increase in the tail-flick latency. Ouabain itself (1-1000 ng, i.t.) did not cause antinociception. Treatment with 10 ng ouabain significantly decreased the antinociceptive effect of 2 microg endomorphin-1, but none of the other combinations did significantly differ from the endomorhin-1-treated groups. These data indicate that endomorphin-1 increases the activity of Na(+),K(+)-ATPase in vitro but this effect may play a weak role in the antinociception induced by intrathecal endomorphin-1.

    Topics: Analgesics; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enzyme Inhibitors; Injections, Spinal; Male; Mice; Morphine; Oligopeptides; Ouabain; Pain; Sodium-Potassium-Exchanging ATPase; Synaptosomes; Time Factors

2003
Reduced expression of a novel mu-opioid receptor (MOR) subtype MOR-1B in CXBK mice: implications of MOR-1B in the expression of MOR-mediated responses.
    The European journal of neuroscience, 2003, Volume: 18, Issue:12

    A novel mu-opioid receptor (MOR) subtype, named MOR-1B, derived from alternatively spliced variants of MOR gene, has been isolated from the rat brain. Here we found for the first time that CXBK recombinant-inbred mice display a significant reduction in the expression of MOR-1B mRNA in the brain as compared to that in their progenitor C57BL/6 mice. In contrast, the expression level of MOR-1 mRNA in the brain of CXBK mice was similar to that found in C57BL/6 mice. Furthermore, relatively lower levels of MOR-1B immunoreactivity were detected in the periaqueductal grey matter (PAG) of CXBK mice than that observed in C57BL/6 mice. To investigate further the possible changes in MOR function to activate G-proteins under the condition of a reduced MOR-1B expression, the guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding assay was performed. We found that the increased level of [35S]GTPgammaS bindings to whole brain membranes induced by a selective MOR agonist endomorphin-1 was significantly decreased in CXBK mice, indicating that CXBK strain can be classified as MOR-1B-knockdown mice. We next investigated whether intracerebroventricular (i.c.v.) pretreatment with an antisence oligodeoxynucleotide against exon 5 of MOR gene (MOR-1B) could affect the endomorphin-1-induced supraspinal antinociception. The i.c.v. pretreatment with antisence oligodeoxynucleotide against MOR-1B produced a significant reduction in the i.c.v.-administered endomorphin-1-induced antinociceptive effect. The present data provide first evidence that a lack of MOR-1B expression may, at least in part, contribute to the reduced sensitivity to MOR agonists in CXBK mice, and MOR-1B may play a potential role in the MOR-mediated supraspinal antinociception.

    Topics: Alternative Splicing; Animals; Brain; Brain Chemistry; Cell Membrane; Down-Regulation; Guanosine 5'-O-(3-Thiotriphosphate); Mice; Mice, Inbred C57BL; Mice, Inbred Strains; Oligonucleotides, Antisense; Oligopeptides; Pain; Protein Isoforms; Radioligand Assay; Receptors, Opioid, mu; Sulfur Radioisotopes

2003
Anatomical and functional correlation of the endomorphins with mu opioid receptor splice variants.
    The European journal of neuroscience, 2002, Volume: 16, Issue:6

    The present study characterizes the relationship between the endogenous mu opioid peptides endomorphin-1 (EM-1) and endomorphin-2 (EM-2) and several splice variants of the cloned mu opioid receptor (MOR-1) encoded by the mu opioid receptor gene (Oprm). Confocal laser microscopy revealed that fibers containing EM-2-like immunoreactivity (-LI) were distributed in close apposition to fibers showing MOR-1-LI (exon 4-LI) and to MOR-1C-LI (exons 7/8/9-LI) in the superficial laminae of the lumbar spinal cord. We also observed colocalization of EM-2-LI and MOR-1-LI in a few fibers of lamina II, and colocalization of EM-2-LI and MOR-1C-LI in laminae I-II, and V-VI. To assess the functional relevance of the MOR-1 variants in endomorphin analgesia, we examined the effects of antisense treatments that targeted individual exons within the Oprm1 gene on EM-1 and EM-2 analgesia in the tail flick test. This antisense mapping study implied mu opioid receptor mechanisms for the endomorphins are distinct from those of morphine or morphine-6beta-glucuronide (M6G).

    Topics: Alternative Splicing; Amino Acid Sequence; Animals; Base Sequence; Exons; Immunohistochemistry; Male; Mice; Mice, Inbred Strains; Oligopeptides; Pain; Posterior Horn Cells; Protein Structure, Tertiary; Receptors, Opioid, mu

2002
[Analgesic effect of kynurenic acid].
    Ideggyogyaszati szemle, 2002, Sep-20, Volume: 55, Issue:9-10

    It is well known that glutamate receptors have significant role in the pain transmission. The activation of N-methyl-D-aspartate receptors causes persistent pain, therefore the antagonists acting on these receptors cause antinociception in chronic pain states. As the synthetic N-methyl-D-aspartate receptor antagonists have several side effects, they are not used generally in the clinical therapy. The tryptophan metabolite kynurenic acid is an endogenous antagonist of N-methyl-D-aspartate receptors. Although some data proved its neuroprotective effect, only a few studies suggest the antinociceptive potential of kynurenic acid. The goal of this review to summarise the possible role of kynurenic acid in the pain therapy based on the results of animal studies. Data available concerning this subject demonstrated that kynurenic acid is not an appropriate agent for antinociception neither in single nor in continuous administration because of its side-effect resulting in motor deficiency. On the other hand the combination of low doses of kynurenic acid and endomorphin-1 provides effective antinociception without side-effects on inflammatory pain test, thus may offer a new treatment modality in human pain therapy.

    Topics: Analgesics; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Therapy, Combination; Humans; Injections, Spinal; Kynurenic Acid; Motor Skills; Oligopeptides; Pain; Receptors, N-Methyl-D-Aspartate; Time Factors

2002
Comparison of the effect of intrathecal endomorphin-1 and endomorphin-2 on spinal cord excitability in rats.
    Neuroscience letters, 2002, May-24, Volume: 324, Issue:3

    We examined and compared the effects of intrathecal (i.t.) endomorphin-1 and endomorphin-2 on the nociceptive flexor reflex in decerebrate, spinalized, unanesthetized rats. I.t. endomorphin-1 and -2 induced a dose-dependent depression of the flexor reflex with an initial brief facilitatory effect. The magnitude of reflex facilitation and depression was similar between endomorphin-1 and -2, but the duration of depression was significantly longer for endomorphin-1 than endomorphin-2. The results suggested that the spinal antinociceptive effects of endomorphin-1 and -2 are similar, with endomorphin-1 being more resistant to enzymatic degradation.

    Topics: Afferent Pathways; Analgesics, Opioid; Animals; Carboxypeptidases; Dose-Response Relationship, Drug; Female; Injections, Spinal; Muscle Contraction; Nerve Fibers; Neurons; Nociceptors; Oligopeptides; Pain; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Reflex; Spinal Cord; Synaptic Transmission

2002
Immunohistochemical localization of endomorphin-1 and endomorphin-2 in immune cells and spinal cord in a model of inflammatory pain.
    Journal of neuroimmunology, 2002, Volume: 126, Issue:1-2

    Recently, two novel highly selective mu-opioid receptor (MOR) agonists, endomorphin-1 and endomorphin-2, have been isolated from bovine as well as human brains and were proposed to be the endogenous ligand for MOR. Later, endomorphin-1 and endomorphin-2 have been detected in the immune system of rats and humans using radioimmunoassay in combination with reverse-high-phase-liquid chromatography. In the present study, we analyzed the expression of endomorphin-1, endomorphin-2 and MOR by immunohistochemistry in a model of Freund's complete adjuvant (FCA)-induced painful inflammation. While MOR was upregulated on peripheral and central nerve terminals, inflammation did not alter endomorphin-2 expression in nerve fibers either in the dorsal horn of the spinal cord or in subcutaneous tissue. Endomorphin-1 and endomorphin-2 were expressed in immune cells (macrophage/monocytes) in the medullary region of the popliteal lymph nodes. The proportion of immunocytes (macrophage/monocytes, lymphocytes) containing endomorphin-1 and endomorphin-2 was increased in inflamed lymph nodes and subcutaneous paw tissue of animals with local inflammatory pain. Taken together, the upregulation of MOR and of its endogenous ligands endomorphin-1 and endomorphin-2 in immunocytes suggests an involvement of these opioid peptides in the peripheral control of inflammatory pain.

    Topics: Animals; Freund's Adjuvant; Hindlimb; Immunohistochemistry; Lymph Nodes; Lymphocytes; Macrophages; Male; Monocytes; Oligopeptides; Pain; Posterior Horn Cells; Rats; Rats, Wistar; Skin

2002
Differential antagonism of endomorphin-1 and endomorphin-2 supraspinal antinociception by naloxonazine and 3-methylnaltrexone.
    Peptides, 2002, Volume: 23, Issue:5

    To determine if different subtypes of mu-opioid receptors were involved in antinociception induced by endomorphin-1 and endomorphin-2, the effect of pretreatment with various mu-opioid receptor antagonists beta-funaltrexamine, naloxonazine and 3-methylnaltrexone on the inhibition of the paw-withdrawal induced by endomorphin-1 and endomorphin-2 given intracerebroventricularly (i.c.v.) were studied in ddY male mice. The inhibition of the paw-withdrawal induced by i.c.v. administration of endomorphin-1, endomorphin-2 or DAMGO was completely blocked by the pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine (40 mg/kg), indicating that the antinociception induced by all these peptides are mediated by the stimulation of mu-opioid receptors. However, naloxonazine, a mu1-opioid receptor antagonist pretreated s.c. for 24h was more effective in blocking the antinociception induced by endomorphin-2, than by endomorphin-1 or DAMGO given i.c.v. Pretreatment with a selective morphine-6 beta-glucuronide blocker 3-methylnaltrexone 0.25mg/kg given s.c. for 25 min or co-administration of 3-methylnaltrexone 2.5 ng given i.c.v. effectively attenuated the antinociception induced by endomorphin-2 given i.c.v. and co-administration of 3-methylnaltrexone shifted the dose-response curves for endomorphin-2 induced antinociception to the right by 4-fold. The administration of 3-methylnaltrexone did not affect the antinociception induced by endomorphin-1 or DAMGO given i.c.v. Our results indicate that the antinociception induced by endomorphin-2 is mediated by the stimulation of subtypes of mu-opioid receptor, which is different from that of mu-opioid receptor subtype stimulation by endomorphin-1 and DAMGO.

    Topics: Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Quaternary Ammonium Compounds; Reflex; Time Factors

2002
Role of cholecystokinin in the reduction of endomorphin-2-induced antinociception in diabetic mice.
    European journal of pharmacology, 2001, Mar-23, Volume: 416, Issue:1-2

    We examined the role of cholecystokinin in the reduction of endomorphin-2-induced antinociception in diabetic mice. Endomorphin-1 (1-10 microg, i.c.v.) and endomorphin-2 (3-30 microg, i.c.v.) dose dependently inhibited the tail-flick response in non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effect of endomorphin-1 in non-diabetic and diabetic mice. On the other hand, the antinociceptive effect of endomorphin-2 in diabetic mice was significantly less than that in non-diabetic mice. Cholecystokinin octapeptide (CCK-8) dose dependently reduced the antinociceptive effects of endomorphin-1 and endomorphin-2 in non-diabetic mice. However, in diabetic mice, CCK-8 significantly inhibited the antinociceptive effect of endomorphin-1, but not of endomorphin-2. In non-diabetic mice, CI-988 ((R-[R*,R*])-4-([3-1H-indol]-3-yl)-2-methyl-1-oxo-2-([(tricyclo(3.3.1.1)dec-2-yloxy)carbonyl] amino)propylamino-1-phenyl-ethylamino-4-oxybutanoic acid) had no significant effect on either endomorphin-1- or endomorphin-2-induced antinociception. In diabetic mice, while CI-988 had no significant effect on endomorphin-1-induced antinociception, it dose dependently enhanced the antinociceptive effect of endomorphin-2. The results indicated that the reduction of endomorphin-2-induced antinociception in diabetic mice might be due, at least in part, to the activation of CCK(2) receptors.

    Topics: Analgesics; Animals; Behavior, Animal; Cholecystokinin; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Indoles; Injections, Intraventricular; Meglumine; Mice; Mice, Inbred ICR; Nociceptors; Oligopeptides; Pain; Pain Measurement; Sincalide

2001
Saturable brain-to-blood transport of endomorphins.
    Experimental brain research, 2001, Volume: 139, Issue:1

    Opiate-modulating tetrapeptides such as tyrosine-melanocyte-stimulating hormone-release inhibiting factor-1 (Tyr-MIF-1; Tyr-Pro-Leu-Gly-NH2) and Tyr-W-MIF-1 (Tyr-Pro-Trp-Gly-NH2) are saturably transported from brain to blood. We examined whether two recently described endogenous opiate tetrapeptides with similar structures, the mu-specific endomorphins, also are transported across the blood-brain barrier (BBB). We found that the efflux rates of endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) were each self-inhibited by an excess of the respective endomorphin, thereby defining saturable transport. Cross-inhibition of the transport of each endomorphin by the other indicated shared transport. By contrast, no inhibition of the efflux of either endomorphin resulted from coadministration of Tyr-MIF-1, indicating that peptide transport system-1 (PTS-1) was not involved. Tyr-W-MIF-1, which is partially transported by PTS-1, significantly (P<0.01) decreased the transport of endomorphin-1 and tended (P=0.051) to decrease the transport of endomorphin-2, consistent with its role as both an opiate and antiopiate. Although involved in modulation of pain, coinjection of calcitonin gene-related peptide or constriction of the sciatic nerve did not appear to inhibit endomorphin efflux. Thus, the results demonstrate the existence of a new efflux system across the BBB which saturably transports endomorphins from brain to blood.

    Topics: Animals; Binding, Competitive; Blood-Brain Barrier; Brain; Calcitonin Gene-Related Peptide; Carrier Proteins; Iodine Radioisotopes; Ligation; Male; Membrane Transport Proteins; Mice; Mice, Inbred ICR; MSH Release-Inhibiting Hormone; Oligopeptides; Pain; Radioligand Assay; Receptors, Opioid, mu; Sciatic Nerve

2001
Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
    European journal of pharmacology, 2001, Sep-21, Volume: 427, Issue:3

    Two highly selective mu-opioid receptor agonists, endomorphin-1 and endomorphin-2, have been identified and postulated to be endogenous ligands for mu-opioid receptors. Intrathecal (i.t.) administration of endomorphin-1 and endomorphin-2 at doses from 0.039 to 5 nmol dose-dependently produced antinociception with the paw-withdrawal test. The paw-withdrawal inhibition rapidly reached its peak at 1 min, rapidly declined and returned to the pre-injection levels in 20 min. The inhibition of the paw-withdrawal responses to endomorphin-1 and endomorphin-2 at a dose of 5 nmol observed at 1 and 5 min after injection was blocked by pretreatment with a non-selective opioid receptor antagonist naloxone (1 mg/kg, s.c.). The antinociceptive effect of endomorphin-2 was more sensitive to the mu (1)-opioid receptor antagonist, naloxonazine than that of endomorphin-1. The endomorphin-2-induced paw-withdrawal inhibition at both 1 and 5 min after injection was blocked by pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine (10 mg/kg, s.c.) or the delta(2)-opioid receptor antagonist naltriben (0.6 mg/kg, s.c.) but not the delta(1)-opioid receptor antagonist 7-benzylidine naltrexone (BNTX) (0.6 mg/kg s.c.). In contrast, the paw-withdrawal inhibition induced by endomorphin-1 observed at both 1 and 5 min after injection was not blocked by naloxonazine (35 mg/kg, s.c.), nor-binaltorphimine (10 mg/kg, s.c.), naltriben (0.6 mg/kg, s.c.) or BNTX (0.6 mg/kg s.c.). The endomorphin-2-induced paw-withdrawal inhibition was blocked by the pretreatment with an antiserum against dynorphin A-(1-17) or [Met(5)]enkephalin, but not by antiserum against dynorphin B-(1-13). Pretreatment with these antisera did not affect the endomorphin-1-induced paw-withdrawal inhibition. Our results indicate that endomorphin-2 given i.t. produces its antinociceptive effects via the stimulation of mu (1)-opioid receptors (naloxonazine-sensitive site) in the spinal cord. The antinociception induced by endomophin-2 contains additional components, which are mediated by the release of dynorphin A-(1-17) and [Met(5)]enkephalin which subsequently act on kappa-opioid receptors and delta(2)-opioid receptors to produce antinociception.

    Topics: Analgesics; Animals; Benzylidene Compounds; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Methionine; Immune Sera; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Time Factors

2001
Acute antinociceptive tolerance and asymmetric cross-tolerance between endomorphin-1 and endomorphin-2 given intracerebroventricularly in the mouse.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:3

    Development of tolerance in mice pretreated intracerebroventricularly with mu-opioid receptor agonist endomorphin-1, endomorphin-2, or [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO) was compared between endomorphin-1- and endomorphin-2-induced antinociception with the tail-flick test. A 2-h pretreatment with endomorphin-1 (30 nmol) produced a 3-fold shift to the right in the dose-response curve for endomorphin-1. Similarly, a 1-h pretreatment with endomorphin-2 (70 nmol) caused a 3.9-fold shift to the right for endomorphin-2. In cross-tolerance experiments, pretreatment with endomorphin-2 (70 nmol) caused a 2.3-fold shift of the dose-response curve for endomorphin-1, whereas pretreatment with endomorphin-1 (30 nmol) caused no change of the endomorphin-2 dose-response curve. Thus, mice acutely tolerant to endomorphin-1 were not cross-tolerant to endomorphin-2, although mice made tolerant to endomorphin-2 were partially cross-tolerant to endomorphin-1; an asymmetric cross-tolerance occurred. Pretreatment with DAMGO 3 h before intracerebroventricular injection of endomorphin-1, endomorphin-2, or DAMGO attenuated markedly the antinociception induced by endomorphin-1 and DAMGO but not endomorphin-2. It is proposed that two separate subtypes of mu-opioid receptors are involved in antinociceptive effects induced by endomorphin-1 and endomorphin-2. One subtype of opioid mu-receptors is stimulated by DAMGO, endomorphin-1, and endomorphin-2, and another subtype of mu-opioid receptors is stimulated solely by endomorphin-2.

    Topics: Analgesics, Opioid; Analysis of Variance; Animals; Drug Tolerance; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Oligopeptides; Pain; Pain Measurement; Time Factors

2001
Analgesic effect of endomorphin-1.
    Acta pharmacologica Sinica, 2001, Volume: 22, Issue:11

    To study the analgesic effect of endomorphin-1 (EM-1).. The experiment was performed in rats and mice to study the analgesic effect of intraperitoneal (ip) injection of EM-1 with tail stimulation-vocalization test, writhing test, adjuvant arthritis, and neuropathic pain model and to compare it with the analgesic effects produced by intracerebroventricular (icv) and intrathecal (it) administrations.. 1) EM-1 raised the pain threshold dose-dependently in tail stimulation-vocalization test in rats and inhibited the writhing responses induced by ip acetic acid in mice. EM-1 also decreased the hyperalgesia in both adjuvant arthritis and neuropathic pain model. 2) The analgesic effect induced by central (icv and it) administration of EM-1 was faster and more powerful than that induced by peripheral (ip) administration. 3) The analgesic effect of EM-1 was reversed by naloxone (opioid receptor antagonist), as well as by cyprodime (mu-opioid receptor selective antagonist). Repeated administrations of EM-1 induced tolerance.. EM-1 had a definite analgesic effect and the analgesic effect of EM-1 was mediated by central mu-opioid receptor.

    Topics: Analgesics, Opioid; Animals; Arthritis, Experimental; Drug Tolerance; Male; Mice; Nociceptors; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Rats; Receptors, Opioid, mu

2001
Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse.
    The Journal of pharmacology and experimental therapeutics, 2000, Volume: 294, Issue:3

    We have previously demonstrated that both endomorphin-1 and endomorphin-2 produce their antinociception by the stimulation of mu-opioid receptors. However, the antinociception induced by endomorphin-2 contains an additional component, which is mediated by the release of dynorphin A (1-17) acting on kappa-opioid receptors. These studies were done to determine whether the antinociception induced by endomorphin-1 and endomorphin-2 given supraspinally was mediated by the activation of different descending pain control pathways in the mouse. Specific receptor antagonists or antisera against endogenous opioid peptides were injected intrathecally to block the receptors or bind the released endogenous opioid peptides, and endomorphin-1 or endomorphin-2 was then administered i.c.v. to activate the descending pain control systems to produce antinociception. The tail-flick response was used as antinociceptive test. The blockade of the alpha(2)-adrenoceptors and 5-hydroxytryptamine receptors in the spinal cord by i.t. injection of yohimbine and methysergide, respectively, inhibited the antinociception induced by i.c.v.-administered endomorphin-1 and endomorphin-2. However, the antinociception induced by endomorphin-2 was inhibited by i.t. pretreatment with delta(2)-opioid receptor antagonist naltriben or kappa-opioid receptor antagonist nor-binaltorphimine, but not by the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Try-Orn-Thr-Pen-Thr-NH(2) or the delta(1)-opioid receptor antagonist 7-benzylidene naltrexamine. Intrathecal pretreatment with antiserum against Met-enkephalin attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1. Furthermore, i.t. pretreatment with antiserum against dynorphin A (1-17) also inhibited the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1. Intrathecal pretreatment with antiserum against Leu-enkephalin or beta-endorphin did not inhibit i.c.v.-administered endomorphin-1- or endomorphin-2-induced antinociception. The results indicate that, like other opioid micro-receptor agonists, morphine, and [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin, endomorphin-1 and endomorphin-2 given i.c.v. produce antinociception by activating spinipetal noradrenergic and serotonergic pathways for producing antinociception. However, the antinociception induced by endomorphin-2 given i.c.v. also contains other components, which are mediated by the release of Met-enkephalin and dynorphi

    Topics: Adrenergic alpha-Antagonists; Animals; Binding, Competitive; Immune Sera; Injections, Intraventricular; Injections, Spinal; Mice; Mice, Inbred ICR; Narcotic Antagonists; Oligopeptides; Opioid Peptides; Pain; Pain Measurement; Receptors, Adrenergic, alpha-2; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin Antagonists; Spinal Cord

2000
Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception.
    European journal of pharmacology, 1999, May-07, Volume: 372, Issue:1

    We investigated the role of mu-opioid receptor subtypes in both endomorphin-1 and endomorphin-2 induced antinociception in mice using supraspinally mediated behavior. With tail pressure as a mechanical noxious stimulus, both intracerebroventricularly (i.c.v.) and intrathecally (i.t.) injected-endomorphins produced potent and significant antinociceptive activity. Antinociception induced by i.t. and i.c.v. injection of endomorphin-1 was not reversed by pretreatment with a selective mu1-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.). By contrast, antinociception induced by i.t. and i.c.v. endomorphin-2 was significantly decreased by mu1-opioid receptor antagonist. Antinociception of both i.t. and i.c.v. endomorphin-1 and -2 was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg, s.c.). The results indicate that endomorphins may produce antinociception through the distinct mu1 and mu2 subtypes of mu-opioid receptor.

    Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Oligopeptides; Pain; Receptors, Opioid, mu; Time Factors

1999
Effects of orphanin FQ on endomorphin-1 induced analgesia.
    Brain research, 1999, Jul-24, Volume: 835, Issue:2

    Orphanin FQ (also known as nociceptin) is a 17-amino-acid peptide which acts as a potent endogenous agonist of the orphan opioid receptor-like (ORL1) receptor. Endomorphin-1, a 4-amino-acid peptide discovered recently, is a potent and selective endogenous agonist for the mu-opiate receptor. In the present study, the effect of OFQ or/and endomorphin-1 on the response to noxious thermal stimuli was observed using the tail-flick test in rats. Intracerebroventricular (i.c.v.) administration of OFQ (1, 5 microg) could shorten tail-flick latency; In contrast, intrathecal (i.t.) administration of OFQ (1, 2 or 10 microg) could increase the latency; i.c.v. (1, 2, 5 microg) or i.t. (0.2, 2, 5 microg) administration of endomorphin-1 dose-dependently increased the latency, indicating an analgesic effect. Furthermore, OFQ (0.1-5 microg) when intraventricularly injected together with endomorphin-1 (5 microg), could dose-dependently reverse the analgesia induced by the latter. On the contrary, OFQ (1 microg) intrathecally injected together with endomorphin-1 (0.2 microg) could further increase the tail-flick latency. The results showed that OFQ at the supraspinal level produces hyperalgesia and is antagonistic to endomorphin-1, while at the spinal level it produces analgesia and is synergic with endomorphin-1. Different interaction mechanism between OFQ and endomorphin-1 in the brain and the spinal cord is thus suggested.

    Topics: Analgesics, Opioid; Animals; Injections, Intraventricular; Injections, Spinal; Nociceptin; Oligopeptides; Opioid Peptides; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Opioid

1999
Endomorphin-1 and endomorphin-2 show differences in their activation of mu opioid receptor-regulated G proteins in supraspinal antinociception in mice.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:1

    Endomorphin-1 and endomorphin-2 are tetrapeptides of the brain whose binding profiles and analgesic activities indicate that they are endogenous ligands at micro opioid receptors. To analyze the classes of G transducer proteins activated by these opioids in the production of supraspinal antinociception, the expression of alpha subunits of the G(i) protein class, G(i1), G(i2), G(i3), G(o1), G(o2), and G(z), and those of the G(q) protein family, G(q) and G(11), was reduced by administration of antisense oligodeoxynucleotides (ODNs) complementary to sequences in their respective mRNAs. The ODN treatments promoted differences in the analgesic effects displayed by morphine, [D-Ala(2),N-MePhe(4), Gly-ol(5)]enkephalin (DAMGO), and the novel opioids endomorphin-1 and endomorphin-2. The impairment of G(i1)alpha and G(i3)alpha function led to a weaker analgesic response to the endomorphins and to the alpha(2)-adrenoceptor agonist clonidine, whereas the effects of morphine and DAMGO were not affected. An antisense probe targeting G(i2)alpha blocked the antinociceptive effects of endomorphin-2, morphine, DAMGO, and clonidine but was without effect on the activity of endomorphin-1. Mice receiving the ODN to G(z)alpha subunits showed impaired response to all agonists. The knockdown of either G(o1)alpha, G(o2)alpha, G(q)alpha, or G(11)alpha had little or no influence on the antinociception induced by any of the opioids in the study. Thus, agonists exhibit differences in activating the variety of GTP-binding proteins regulated by mu opioid receptors.

    Topics: Analgesics; Analgesics, Opioid; Anesthesia, Spinal; Animals; GTP-Binding Protein alpha Subunit, Gi2; GTP-Binding Protein alpha Subunits, Gi-Go; GTP-Binding Proteins; Male; Mice; Oligodeoxyribonucleotides; Oligopeptides; Pain; Pain Threshold; Proto-Oncogene Proteins; Receptors, Opioid, mu

1999
Endomorphin-1 reduces carrageenan-induced fos expression in the rat spinal dorsal horn.
    Neuropeptides, 1999, Volume: 33, Issue:4

    Intraplantar injection of carrageenan induced significant Fos expression in the superficial and deep spinal dorsal horn at the L(4)-L(5)segments and extensive peripheral edema of the ipsilateral foot in rats. Intraplantar injection of endomorphin-1, endogenous ligand for mu opioid receptor, in the same region produced dose-dependent reduction of carrageenan-induced Fos expression and peripheral edema, which were completely blocked by co-administration of intraplantar injection of naloxone (20 microgram). The systemic injection of the highest dose of endomorphin-1 (50 microgram) had no significant reductory effect on Fos expression and peripheral edema. These results further provided a strong evidence for involvement of mu opioid receptor in peripheral analgesia, particularly in inflammation pain.

    Topics: Analgesics, Opioid; Animals; Carrageenan; Male; Naloxone; Narcotic Antagonists; Nociceptors; Oligopeptides; Pain; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley

1999